Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing
ACS Nano ( IF 15.8 ) Pub Date : 2024-12-17 , DOI: 10.1021/acsnano.4c11169 Maksim Andreev, Juncheol Kang, Taeran Lee, Jae-Woong Choi, Je-Jun Lee, Hyongsuk Choo, Sehee Lee, Jin-Hong Park
ACS Nano ( IF 15.8 ) Pub Date : 2024-12-17 , DOI: 10.1021/acsnano.4c11169 Maksim Andreev, Juncheol Kang, Taeran Lee, Jae-Woong Choi, Je-Jun Lee, Hyongsuk Choo, Sehee Lee, Jin-Hong Park
Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces. Here, we utilize an electron beam to develop tungsten diselenide (WSe2) homojunction NDT devices with W-shaped current–voltage (I–V) characteristics. We demonstrate that electron beam enables the manipulation of Se atoms in WSe2, facilitating controllable and spatially precise tailoring of the WSe2 work function. The electron-beam treatment applied to a part of the WSe2 channel induces a lateral homojunction and ultimately results in the W-shaped I–V curves, which enable both one-input and two-input ternary logic gates. We propose and implement a balanced circuit design for two-input ternary NAND, AND, NOR, and OR gates, featuring a low device count, full-swing operation, and minimized output signal variations. Together with three types of ternary inverters also designed in this work, they form a functionally complete set of ternary logic gates─a prerequisite for practical ternary computing. This work addresses a critical gap in the development of NDT-based ternary computing by ensuring functional completeness and highlights the versatility of electron-beam treatment as an engineering tool for tailoring the properties of two-dimensional van der Waals materials.
中文翻译:
基于范德华材料的电子束诱导负差分跨导同质结器件,用于功能完备的三元计算
负差分跨导 (NDT) 器件已成为多值逻辑计算的有前途的候选者,尤其是三元逻辑系统。为了能够计算任何三元操作,必须拥有一组功能完整的三元逻辑门,而目前的无损检测技术仍无法实现这一点,这对更高级别的电路设计构成了关键限制。此外,NDT 设备通常依赖于异质结,由于引入了额外的材料和界面,使制造复杂化并影响可靠性。在这里,我们利用电子束开发了具有 W 形电流-电压 (I-V) 特性的二硒化钨 (WSe 2 ) 同结无损检测器件。我们证明电子束能够操纵 WSe 2 中的 Se 原子,促进 WSe 2 功函数的可控和空间精确定制。应用于 WSe 2 通道部分的电子束处理会感应出横向同质结,并最终产生 W 形 I-V 曲线,从而实现单输入和双输入三元逻辑门。我们提出并实现了一种用于双输入三元 NAND、AND、NOR 和 OR 门的平衡电路设计,具有器件数量少、全摆幅操作和最小输出信号变化的特点。它们与本研究中还设计的三种类型的三元逆变器一起,形成了一套功能完整的三元逻辑门——这是实际三元计算的先决条件。 这项工作通过确保功能完整性解决了基于 NDT 的三元计算发展中的关键差距,并强调了电子束处理作为定制二维范德华材料特性的工程工具的多功能性。
更新日期:2024-12-18
中文翻译:
基于范德华材料的电子束诱导负差分跨导同质结器件,用于功能完备的三元计算
负差分跨导 (NDT) 器件已成为多值逻辑计算的有前途的候选者,尤其是三元逻辑系统。为了能够计算任何三元操作,必须拥有一组功能完整的三元逻辑门,而目前的无损检测技术仍无法实现这一点,这对更高级别的电路设计构成了关键限制。此外,NDT 设备通常依赖于异质结,由于引入了额外的材料和界面,使制造复杂化并影响可靠性。在这里,我们利用电子束开发了具有 W 形电流-电压 (I-V) 特性的二硒化钨 (WSe 2 ) 同结无损检测器件。我们证明电子束能够操纵 WSe 2 中的 Se 原子,促进 WSe 2 功函数的可控和空间精确定制。应用于 WSe 2 通道部分的电子束处理会感应出横向同质结,并最终产生 W 形 I-V 曲线,从而实现单输入和双输入三元逻辑门。我们提出并实现了一种用于双输入三元 NAND、AND、NOR 和 OR 门的平衡电路设计,具有器件数量少、全摆幅操作和最小输出信号变化的特点。它们与本研究中还设计的三种类型的三元逆变器一起,形成了一套功能完整的三元逻辑门——这是实际三元计算的先决条件。 这项工作通过确保功能完整性解决了基于 NDT 的三元计算发展中的关键差距,并强调了电子束处理作为定制二维范德华材料特性的工程工具的多功能性。