当前位置:
X-MOL 学术
›
Adv. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrated Top‐Gate Organic Electrochemical Transistors: A Scalable Approach for Fast and Efficient Operation
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2024-12-18 , DOI: 10.1002/aelm.202400656 Ali Solgi, Anton Weissbach, Yahya Asl Soleimani, Yeohoon Yoon, Gert Krauss, Tommy Meier, Hsin Tseng, Mukundan Thelakkat, Karl Leo, Hans Kleemann
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2024-12-18 , DOI: 10.1002/aelm.202400656 Ali Solgi, Anton Weissbach, Yahya Asl Soleimani, Yeohoon Yoon, Gert Krauss, Tommy Meier, Hsin Tseng, Mukundan Thelakkat, Karl Leo, Hans Kleemann
Organic electrochemical transistors (OECTs) are gaining attention for their ease of fabrication, flexibility, and biocompatibility, with applications in biosignal sensing, neuromorphic computing, wearable health monitors, environmental monitoring, and bioelectronic interfaces. The interactions between ionic and electronic subcircuits in OECTs raise fundamental questions about the relationship between device design and performance. A major challenge is to meet specific integration, processing, and device performance requirements. While miniaturization of OECTs can improve transconductance and maximum operating frequency, it often compromises cost effectiveness and integratability. This work investigates an OECT architecture that incorporates both a crosslinkable printed aqueous electrolyte and a printed poly(3,4‐ethylenedioxythiophene):ploy(4‐styrenesulfonate) (PEDOT:PSS) top‐gate to achieve efficient gating, higher operating frequencies, and easy integration with low‐cost printing techniques. Improved performance is demonstrated in this top‐gate OECTs over conventional side‐gate structures, achieving sub‐millisecond device operation with channel lengths of 100 µm. This configuration shows practical potential for circuit integration, as demonstrated with a complementary inverter using an ambipolar material.
中文翻译:
集成顶部栅极有机电化学晶体管:一种实现快速高效运行的可扩展方法
有机电化学晶体管 (OECT) 因其易于制造、柔韧性和生物相容性而受到关注,其应用可用于生物信号传感、神经形态计算、可穿戴健康监测器、环境监测和生物电子接口。OECT 中离子和电子子电路之间的相互作用提出了关于器件设计和性能之间关系的基本问题。一个主要挑战是满足特定的集成、处理和设备性能要求。虽然 OECT 的小型化可以提高跨导和最大工作频率,但它通常会损害成本效益和可集成性。这项工作研究了一种 OECT 结构,该结构结合了可交联的印刷水性电解质和印刷的聚(3,4-乙烯二氧噻吩):p(4-苯乙烯磺酸盐)(PEDOT:PSS)顶栅,以实现高效的门控、更高的工作频率,并与低成本印刷技术轻松集成。与传统的侧栅结构相比,这种顶部栅极 OECT 的性能得到了提高,实现了通道长度为 100 μm 的亚毫秒级器件操作。这种配置显示了电路集成的实际潜力,正如使用双极材料的互补逆变器所证明的那样。
更新日期:2024-12-18
中文翻译:
集成顶部栅极有机电化学晶体管:一种实现快速高效运行的可扩展方法
有机电化学晶体管 (OECT) 因其易于制造、柔韧性和生物相容性而受到关注,其应用可用于生物信号传感、神经形态计算、可穿戴健康监测器、环境监测和生物电子接口。OECT 中离子和电子子电路之间的相互作用提出了关于器件设计和性能之间关系的基本问题。一个主要挑战是满足特定的集成、处理和设备性能要求。虽然 OECT 的小型化可以提高跨导和最大工作频率,但它通常会损害成本效益和可集成性。这项工作研究了一种 OECT 结构,该结构结合了可交联的印刷水性电解质和印刷的聚(3,4-乙烯二氧噻吩):p(4-苯乙烯磺酸盐)(PEDOT:PSS)顶栅,以实现高效的门控、更高的工作频率,并与低成本印刷技术轻松集成。与传统的侧栅结构相比,这种顶部栅极 OECT 的性能得到了提高,实现了通道长度为 100 μm 的亚毫秒级器件操作。这种配置显示了电路集成的实际潜力,正如使用双极材料的互补逆变器所证明的那样。