Combinatorica ( IF 1.0 ) Pub Date : 2024-12-18 , DOI: 10.1007/s00493-024-00130-2 Siddharth Bhandari, Abhishek Khetan
A subset \(\mathcal {C}\subseteq \{0,1,2\}^n\) is said to be a trifferent code (of block length n) if for every three distinct codewords \(x,y, z \in \mathcal {C}\), there is a coordinate \(i\in \{1,2,\ldots ,n\}\) where they all differ, that is, \(\{x(i),y(i),z(i)\}\) is same as \(\{0,1,2\}\). Let T(n) denote the size of the largest trifferent code of block length n. Understanding the asymptotic behavior of T(n) is closely related to determining the zero-error capacity of the (3/2)-channel defined by Elias (IEEE Trans Inform Theory 34(5):1070–1074, 1988), and is a long-standing open problem in the area. Elias had shown that \(T(n)\le 2\times (3/2)^n\) and prior to our work the best upper bound was \(T(n)\le 0.6937 \times (3/2)^n\) due to Kurz (Example Counterexample 5:100139, 2024). We improve this bound to \(T(n)\le c \times n^{-2/5}\times (3/2)^n\) where c is an absolute constant.
中文翻译:
改进了 Trifferent 代码大小的上限
如果对于每三个不同的码字 \(x,y, z \in \mathcal {C}\),有一个坐标 \(i\in \{1,2,\ldots ,n\}\) 它们都不同,即 \(\{x(i),y(i),z(i)\}\) 与 \(\{0,1,2\}\) 相同,则子集 \(\mathcal {C}\subseteq \{0,1,2\}^n\) 被称为三元码(块长 n)。设 T(n) 表示区块长度 n 的最大三元代码的大小。理解 T(n) 的渐近行为与确定 Elias 定义的 (3/2) 通道的零误差容量密切相关 (IEEE Trans Inform Theory 34(5):1070–1074, 1988),并且是该领域长期存在的悬而未决的问题。Elias 已经证明 \(T(n)\le 2\times (3/2)^n\),在我们的工作之前,由于库尔茨,最佳上限是 \(T(n)\le 0.6937 \times (3/2)^n\) (示例反例 5:100139,2024)。我们将这个边界提高到 \(T(n)\le c \times n^{-2/5}\times (3/2)^n\),其中 c 是一个绝对常数。