当前位置:
X-MOL 学术
›
Sep. Purif. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular engineering of perylene diimide polymers to enhance photocatalytic performance for efficient photodegradation of ofloxacin
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-12-17 , DOI: 10.1016/j.seppur.2024.131146 Chenxi Huang, Weili Yu, Ningjie Fang, Chuanshu He, Yinghao Chu, Bo Lai
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-12-17 , DOI: 10.1016/j.seppur.2024.131146 Chenxi Huang, Weili Yu, Ningjie Fang, Chuanshu He, Yinghao Chu, Bo Lai
The field of photocatalytic degradation has garnered considerable attention for perylene diimide (PDI), primarily because of their exceptional stability, distinctive optoelectronic properties, and outstanding charge transport efficiency. Nevertheless, the limited efficiency of photoinduced charge carrier utilization and poor recyclability pose challenges for real-world photocatalyst applications. We developed three polymers, m-PDI, p-PDI, and o-PDI, by reacting PDI with various benzene diamine compounds at different connection positions, aiming to improve the separation efficiency of photoinduced charge carriers. These unique connection sites resulted in variations in surface area, energy level distribution, and the migration and separation behaviors of photogenerated charge carriers within the polymers. Among the materials, m-PDI demonstrated the largest specific surface area along with the most deeply positioned valence band. Furthermore, its unique structure enabled stronger interactions with ofloxacin (OFL), facilitating more effective electron transfer from the OFL molecules to the catalyst compared to both p-PDI and o-PDI. Consequently, under light irradiation, m-PDI demonstrated outstanding photocatalytic efficiency, achieving a degradation rate constant of 0.07481 min−1 within 60 min. This performance was approximately 4 times higher than that of p-PDI and 7 times greater than o-PDI. Additionally, the m-PDI composite showed excellent stability and resilience during recovery experiments and photocatalytic degradation tests in complex aquatic environments. Finally, LC-MS analysis was applied to predict degradation intermediates and pathways for OFL. This work opens up new possibilities for utilizing high-performance organic materials in the eco-friendly treatment of antibiotic-containing wastewater and provides valuable insights into their design principles.
中文翻译:
苝二亚胺聚合物的分子工程增强光催化性能,实现氧氟沙星的高效光降解
光催化降解领域对苝二酰亚胺 (PDI) 引起了相当大的关注,主要是因为它们具有出色的稳定性、独特的光电特性和出色的电荷传输效率。然而,光诱导电流子利用效率有限且可回收性差,给实际光催化剂应用带来了挑战。通过将 PDI 与不同连接位置的各种苯二胺化合物反应,我们开发了 m-PDI、p-PDI 和 o-PDI 三种聚合物,旨在提高光诱导载流子的分离效率。这些独特的连接位点导致聚合物内表面积、能级分布以及光生载流子的迁移和分离行为发生变化。在这些材料中,m-PDI 表现出最大的比表面积以及最深定位的价带。此外,其独特的结构能够与氧氟沙星 (OFL) 产生更强的相互作用,与 p-PDI 和 o-PDI 相比,有助于更有效地将电子从 OFL 分子转移到催化剂。因此,在光照射下,m-PDI 表现出出色的光催化效率,在 60 分钟内达到 0.07481 min-1 的降解速率常数。该性能大约是 p-PDI 的 4 倍,是 o-PDI 的 7 倍。此外,m-PDI 复合材料在复杂水生环境中的回收实验和光催化降解测试中表现出优异的稳定性和弹性。最后,应用 LC-MS 分析预测 OFL 的降解中间体和途径。 这项工作为利用高性能有机材料对含抗生素的废水进行环保处理开辟了新的可能性,并为其设计原则提供了有价值的见解。
更新日期:2024-12-17
中文翻译:
苝二亚胺聚合物的分子工程增强光催化性能,实现氧氟沙星的高效光降解
光催化降解领域对苝二酰亚胺 (PDI) 引起了相当大的关注,主要是因为它们具有出色的稳定性、独特的光电特性和出色的电荷传输效率。然而,光诱导电流子利用效率有限且可回收性差,给实际光催化剂应用带来了挑战。通过将 PDI 与不同连接位置的各种苯二胺化合物反应,我们开发了 m-PDI、p-PDI 和 o-PDI 三种聚合物,旨在提高光诱导载流子的分离效率。这些独特的连接位点导致聚合物内表面积、能级分布以及光生载流子的迁移和分离行为发生变化。在这些材料中,m-PDI 表现出最大的比表面积以及最深定位的价带。此外,其独特的结构能够与氧氟沙星 (OFL) 产生更强的相互作用,与 p-PDI 和 o-PDI 相比,有助于更有效地将电子从 OFL 分子转移到催化剂。因此,在光照射下,m-PDI 表现出出色的光催化效率,在 60 分钟内达到 0.07481 min-1 的降解速率常数。该性能大约是 p-PDI 的 4 倍,是 o-PDI 的 7 倍。此外,m-PDI 复合材料在复杂水生环境中的回收实验和光催化降解测试中表现出优异的稳定性和弹性。最后,应用 LC-MS 分析预测 OFL 的降解中间体和途径。 这项工作为利用高性能有机材料对含抗生素的废水进行环保处理开辟了新的可能性,并为其设计原则提供了有价值的见解。