当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Small-Molecule Hole Transport Materials for >26% Efficient Inverted Perovskite Solar Cells
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-12-18 , DOI: 10.1021/jacs.4c13356 Jie Zeng, Zhixin Liu, Deng Wang, Jiawen Wu, Peide Zhu, Yuqi Bao, Xiaoyu Guo, Geping Qu, Bihua Hu, Xingzhu Wang, Yong Zhang, Lei Yan, Alex K.-Y. Jen, Baomin Xu
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-12-18 , DOI: 10.1021/jacs.4c13356 Jie Zeng, Zhixin Liu, Deng Wang, Jiawen Wu, Peide Zhu, Yuqi Bao, Xiaoyu Guo, Geping Qu, Bihua Hu, Xingzhu Wang, Yong Zhang, Lei Yan, Alex K.-Y. Jen, Baomin Xu
Chemically modifiable small-molecule hole transport materials (HTMs) hold promise for achieving efficient and scalable perovskite solar cells (PSCs). Compared to emerging self-assembled monolayers, small-molecule HTMs are more reliable in terms of large-area deposition and long-term operational stability. However, current small-molecule HTMs in inverted PSCs lack efficient molecular designs that balance both the charge transport capability and interface compatibility, resulting in a long-standing stagnation of power conversion efficiency (PCE) below 24.5%. Here, we report the comprehensive design of HTMs’ backbone and functional groups, which optimizes a simple planar linear molecular backbone with a high mobility exceeding 7.1 × 10–4 cm2 V–1 S–1 and enhances its interface anchoring capability. Owing to the improved surface properties and anchoring effects, the tailored HTMs enhance the interface contact at the HTM/perovskite heterojunction, minimizing nonradiative recombination and transport loss and leading to a high fill factor of 86.1%. Our work has overcome the persistent efficiency bottleneck for small-molecule HTMs, particularly for large-area devices. Consequently, the resultant PSCs exhibit PCEs of 26.1% (25.7% certified) for a 0.068 cm2 device and 24.7% (24.4% certified) for a 1.008 cm2 device, representing the highest PCE for small-molecule HTMs in inverted PSCs.
中文翻译:
用于 >26% 高效倒置钙钛矿太阳能电池的小分子空穴传输材料
化学可改性的小分子空穴传输材料 (HTM) 有望实现高效和可扩展的钙钛矿太阳能电池 (PSC)。与新兴的自组装单层相比,小分子 HTM 在大面积沉积和长期操作稳定性方面更加可靠。然而,目前倒置 PSC 中的小分子 HTM 缺乏平衡电荷传输能力和界面兼容性的高效分子设计,导致功率转换效率 (PCE) 长期停滞在 24.5% 以下。在这里,我们报道了 HTMs 骨架和官能团的综合设计,它优化了一个简单的平面线性分子骨架,其高迁移率超过 7.1 × 10-4 cm2 V-1 S-1,并增强了其界面锚定能力。由于表面性能和锚定效应的改善,定制的 HTM 增强了 HTM/钙钛矿异质结处的界面接触,最大限度地减少了非辐射复合和传输损耗,并实现了 86.1% 的高填充因子。我们的工作克服了小分子 HTM 的持续效率瓶颈,特别是对于大面积器件。因此,所得 PSC 的 PCE 为 26.1%(25.7% 认证),0.068cm2 设备为 24.7%(24.4% 认证),代表了倒置 PSC 中小分子 HTM 的最高 PCE。
更新日期:2024-12-18
中文翻译:
用于 >26% 高效倒置钙钛矿太阳能电池的小分子空穴传输材料
化学可改性的小分子空穴传输材料 (HTM) 有望实现高效和可扩展的钙钛矿太阳能电池 (PSC)。与新兴的自组装单层相比,小分子 HTM 在大面积沉积和长期操作稳定性方面更加可靠。然而,目前倒置 PSC 中的小分子 HTM 缺乏平衡电荷传输能力和界面兼容性的高效分子设计,导致功率转换效率 (PCE) 长期停滞在 24.5% 以下。在这里,我们报道了 HTMs 骨架和官能团的综合设计,它优化了一个简单的平面线性分子骨架,其高迁移率超过 7.1 × 10-4 cm2 V-1 S-1,并增强了其界面锚定能力。由于表面性能和锚定效应的改善,定制的 HTM 增强了 HTM/钙钛矿异质结处的界面接触,最大限度地减少了非辐射复合和传输损耗,并实现了 86.1% 的高填充因子。我们的工作克服了小分子 HTM 的持续效率瓶颈,特别是对于大面积器件。因此,所得 PSC 的 PCE 为 26.1%(25.7% 认证),0.068cm2 设备为 24.7%(24.4% 认证),代表了倒置 PSC 中小分子 HTM 的最高 PCE。