当前位置:
X-MOL 学术
›
J. Agric. Food Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Host Metabolic Alterations Mediate Phyllosphere Microbes Defense upon Xanthomonas oryzae pv oryzae Infection
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2024-12-17 , DOI: 10.1021/acs.jafc.4c09178 Hubiao Jiang, Xinyan Xu, Luqiong Lv, Xuefang Huang, Temoor Ahmed, Ye Tian, Shiqi Hu, Jianping Chen, Bin Li
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2024-12-17 , DOI: 10.1021/acs.jafc.4c09178 Hubiao Jiang, Xinyan Xu, Luqiong Lv, Xuefang Huang, Temoor Ahmed, Ye Tian, Shiqi Hu, Jianping Chen, Bin Li
Rice bacterial leaf blight, caused by Xanthomonas oryzae pv oryzae (Xoo), is a significant threat to global food security. Although the microbiome plays an important role in protecting plant health, how the phyllosphere microbiome is recruited and the underlying disease resistance mechanism remain unclear. This study investigates how rice phyllosphere microbiomes respond to pathogen invasion through a comprehensive multiomics approach, exploring the mechanisms of microbial defense and host resistance. We discovered that Xoo infection significantly reshapes the physicosphere microbial community. The bacterial network became more complex, with increased connectivity and interactions following infection. Metabolite profiling revealed that l-ornithine was a key compound to recruiting three keystone microbes, Brevundimonas (YB12), Pantoea (YN26), and Stenotrophomonas (YN10). These microbes reduced the disease index by up to 67.6%, and these microbes demonstrated distinct defense mechanisms. Brevundimonas directly antagonized Xoo by disrupting cell membrane structures, while Pantoea and Stenotrophomonas enhanced plant immune responses by significantly increasing salicylic acid and jasmonic acid levels and activating defense-related enzymes. Our findings provide novel insights into plant–microbe interactions, demonstrating how host metabolic changes recruit and activate beneficial phyllosphere microbes to combat pathogenic invasion. This research offers promising strategies for sustainable agricultural practices and disease management.
中文翻译:
宿主代谢改变介导叶球微生物对米黄单胞菌 pv 米单胞菌感染的防御
由米黄单胞菌 pv oryzae (Xoo) 引起的水稻细菌性叶枯病是对全球粮食安全的重大威胁。尽管微生物组在保护植物健康方面发挥着重要作用,但叶状细胞微生物组是如何被招募的以及潜在的抗病机制仍不清楚。本研究通过全面的多组学方法调查了水稻叶际微生物组如何响应病原体入侵,探索微生物防御和宿主耐药的机制。我们发现 Xoo 感染显着重塑了物理圈微生物群落。细菌网络变得更加复杂,感染后连接和相互作用增加。代谢物分析显示,l-鸟氨酸是募集三种关键微生物的关键化合物,即短蛋白单胞菌属 (YB12)、Pantoea (YN26) 和窄食单胞菌属 (YN10)。这些微生物将疾病指数降低了高达 67.6%,并且这些微生物表现出不同的防御机制。短单胞菌通过破坏细胞膜结构直接拮抗 Xoo,而 Pantoea 和 Stenotrophomonas 通过显着增加水杨酸和茉莉酸水平并激活防御相关酶来增强植物免疫反应。我们的研究结果为植物-微生物相互作用提供了新的见解,展示了宿主代谢变化如何招募和激活有益的叶状球微生物以对抗病原入侵。这项研究为可持续农业实践和疾病管理提供了有前途的策略。
更新日期:2024-12-18
中文翻译:
宿主代谢改变介导叶球微生物对米黄单胞菌 pv 米单胞菌感染的防御
由米黄单胞菌 pv oryzae (Xoo) 引起的水稻细菌性叶枯病是对全球粮食安全的重大威胁。尽管微生物组在保护植物健康方面发挥着重要作用,但叶状细胞微生物组是如何被招募的以及潜在的抗病机制仍不清楚。本研究通过全面的多组学方法调查了水稻叶际微生物组如何响应病原体入侵,探索微生物防御和宿主耐药的机制。我们发现 Xoo 感染显着重塑了物理圈微生物群落。细菌网络变得更加复杂,感染后连接和相互作用增加。代谢物分析显示,l-鸟氨酸是募集三种关键微生物的关键化合物,即短蛋白单胞菌属 (YB12)、Pantoea (YN26) 和窄食单胞菌属 (YN10)。这些微生物将疾病指数降低了高达 67.6%,并且这些微生物表现出不同的防御机制。短单胞菌通过破坏细胞膜结构直接拮抗 Xoo,而 Pantoea 和 Stenotrophomonas 通过显着增加水杨酸和茉莉酸水平并激活防御相关酶来增强植物免疫反应。我们的研究结果为植物-微生物相互作用提供了新的见解,展示了宿主代谢变化如何招募和激活有益的叶状球微生物以对抗病原入侵。这项研究为可持续农业实践和疾病管理提供了有前途的策略。