当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Incorporating Metal Oxides to Significantly Improve the Ablative Performance of Silicone Rubber-Based Composites at 10% Tensile Strain Rate under Coupled Thermal-Mechanical-Oxidative Conditions
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-12-18 , DOI: 10.1021/acs.iecr.4c03552 Zhaohui Lu, Shengtai Zhou, Chuxiang Zhou, Hao Zhang, Huawei Zou, Xiancheng Ren
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-12-18 , DOI: 10.1021/acs.iecr.4c03552 Zhaohui Lu, Shengtai Zhou, Chuxiang Zhou, Hao Zhang, Huawei Zou, Xiancheng Ren
Silicone rubber is able to provide excellent thermal protection and accommodates large deformation rates. However, the ablative properties of silicone rubber deteriorate significantly when it is subjected to ablation at large strain rates. To attempt to address the above problem, different types of metal oxides were adopted to enhance the ablative properties of vinyl methyl silicone rubber (VMQ), especially for enhancing the ablative performance at 10% tensile strain rate. The results revealed that the combined use of iron(II, III) oxide (Fe3O4) and zirconium dioxide (ZrO2) was instrumental in improving the ablative properties of VMQ-based composites at 10% tensile strain rate and a heat flux of 1 MW/m2. To further enhance the ablative performance, the ratio of Fe3O4 and ZrO2 was optimized through an experimental design method. Results showed that when the ratio of Fe3O4 and ZrO2 was 1.4:1, the maximum back-face temperature of a 3 mm thick silicone rubber composite remained below 200 °C, while the surface temperature was well above 2000 °C when it was stretched to a tensile strain rate of 10%. This work provides a reference for preparing high-performance flexible thermal ablative composites that exhibit promising application in aerospace and fire protection sectors, among others.
中文翻译:
在热-机械-氧化耦合条件下,以 10% 的拉伸应变率掺入金属氧化物可显著提高硅橡胶基复合材料的烧蚀性能
硅橡胶能够提供出色的热保护并适应较大的变形速率。然而,当硅橡胶在大应变速率下进行烧蚀时,其烧蚀性能会显著恶化。为了解决上述问题,采用不同类型的金属氧化物来增强乙烯基甲基硅橡胶 (VMQ) 的烧蚀性能,特别是提高 10% 拉伸应变率下的烧蚀性能。结果表明,在 10% 拉伸应变率和 1 MW/m2 热通量下,二氧化铁 (II, III) 氧化物 (Fe3, O4) 和二氧化锆 (ZrO2) 的联合使用有助于改善 VMQ 基复合材料的烧蚀性能。为了进一步提高烧蚀性能,通过实验设计方法优化了 Fe3O4 和 ZrO2 的比例。结果表明,当Fe3O4和ZrO2的比例为1.4:1时,3 mm厚的硅橡胶复合材料的最高背面温度保持在200 °C以下,而当拉伸应变率为10%时,表面温度远高于2000 °C。这项工作为制备高性能柔性热烧蚀复合材料提供了参考,这些复合材料在航空航天和消防等领域具有广阔的应用前景。
更新日期:2024-12-18
中文翻译:
在热-机械-氧化耦合条件下,以 10% 的拉伸应变率掺入金属氧化物可显著提高硅橡胶基复合材料的烧蚀性能
硅橡胶能够提供出色的热保护并适应较大的变形速率。然而,当硅橡胶在大应变速率下进行烧蚀时,其烧蚀性能会显著恶化。为了解决上述问题,采用不同类型的金属氧化物来增强乙烯基甲基硅橡胶 (VMQ) 的烧蚀性能,特别是提高 10% 拉伸应变率下的烧蚀性能。结果表明,在 10% 拉伸应变率和 1 MW/m2 热通量下,二氧化铁 (II, III) 氧化物 (Fe3, O4) 和二氧化锆 (ZrO2) 的联合使用有助于改善 VMQ 基复合材料的烧蚀性能。为了进一步提高烧蚀性能,通过实验设计方法优化了 Fe3O4 和 ZrO2 的比例。结果表明,当Fe3O4和ZrO2的比例为1.4:1时,3 mm厚的硅橡胶复合材料的最高背面温度保持在200 °C以下,而当拉伸应变率为10%时,表面温度远高于2000 °C。这项工作为制备高性能柔性热烧蚀复合材料提供了参考,这些复合材料在航空航天和消防等领域具有广阔的应用前景。