当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polyanionic Electrolyte Ionization Desalination Empowers Continuous Solar Evaporation Performance
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-18 , DOI: 10.1002/adma.202410290 Fengyong Lv, Jie Miao, Zhongyu Wang, Jing Hu, Daniel Orejon
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-18 , DOI: 10.1002/adma.202410290 Fengyong Lv, Jie Miao, Zhongyu Wang, Jing Hu, Daniel Orejon
Solar evaporation contributes to sustainable and environmentally friendly production of fresh water from seawater and wastewater. However, poor salt resistance and high degree of corrosion of traditional evaporators in brine make their implementation in real applications scarce. To overcome such deficiency, a polyanionic electrolyte functionalization strategy empowering excellent uniform desalination performance over extended periods of time is exploited. This 3D superhydrophilic graphene oxide solar evaporator design ensures stable water supply by the enhanced self‐driving liquid capillarity and absorption at the evaporation interface as well as efficient vapor diffusion. Meanwhile, the polyanionic electrolyte functionalization implemented via layer‐by‐layer static deposition of polystyrene sodium sulfonate effectively regulates/minimizes the flux of salt ions by exploiting the Donnan equilibrium effect, which eventually hinders local salt crystallization during long‐term operation. Stable evaporation rates in line with the literature of up to 1.68 kg m−2 h−1 are achieved for up to 10 days in brine (15‰ salinity) and for up to 3 days in seawater from Hangzhou Bay in the East China Sea (9‰ salinity); while, maintaining evaporation efficiencies of ≈90%. This work demonstrates the excellent benefits of polyanionic electrolyte functionalization as salt resistance strategy for the development of high‐performance solar powered seawater desalination technology and others.
中文翻译:
聚阴离子电解质电离脱盐实现连续太阳能蒸发性能
太阳能蒸发有助于从海水和废水中可持续和环保地生产淡水。然而,传统蒸发器在盐水中较差的耐盐性和高度腐蚀使其在实际应用中的实施很少。为了克服这种缺陷,利用了一种聚阴离子电解质功能化策略,使其能够在较长时间内实现出色的均匀脱盐性能。这种 3D 超亲水性氧化石墨烯太阳能蒸发器设计通过在蒸发界面处增强的自驱动液体毛细作用和吸收以及高效的蒸汽扩散来确保稳定的供水。同时,通过聚苯乙烯磺酸钠的逐层静态沉积实现的聚阴离子电解质功能化通过利用唐南平衡效应有效地调节/最小化盐离子的通量,最终阻碍了长期运行期间的局部盐结晶。根据文献,在盐水(15‰ 盐度)中长达 10 天,在东海杭州湾(9‰ 盐度)的海水中长达 3 天,可实现高达 1.68 kg m-2 h-1 的稳定蒸发速率;同时保持 ≈90% 的蒸发效率。这项工作证明了聚阴离子电解质功能化作为耐盐策略的出色优势,可用于开发高性能太阳能海水淡化技术等。
更新日期:2024-12-18
中文翻译:
聚阴离子电解质电离脱盐实现连续太阳能蒸发性能
太阳能蒸发有助于从海水和废水中可持续和环保地生产淡水。然而,传统蒸发器在盐水中较差的耐盐性和高度腐蚀使其在实际应用中的实施很少。为了克服这种缺陷,利用了一种聚阴离子电解质功能化策略,使其能够在较长时间内实现出色的均匀脱盐性能。这种 3D 超亲水性氧化石墨烯太阳能蒸发器设计通过在蒸发界面处增强的自驱动液体毛细作用和吸收以及高效的蒸汽扩散来确保稳定的供水。同时,通过聚苯乙烯磺酸钠的逐层静态沉积实现的聚阴离子电解质功能化通过利用唐南平衡效应有效地调节/最小化盐离子的通量,最终阻碍了长期运行期间的局部盐结晶。根据文献,在盐水(15‰ 盐度)中长达 10 天,在东海杭州湾(9‰ 盐度)的海水中长达 3 天,可实现高达 1.68 kg m-2 h-1 的稳定蒸发速率;同时保持 ≈90% 的蒸发效率。这项工作证明了聚阴离子电解质功能化作为耐盐策略的出色优势,可用于开发高性能太阳能海水淡化技术等。