当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Developing a spatial optimization design approach towards energy-saving and outdoor thermal comfortable densely-built residential blocks using a dynamic local energy balance model
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-12-13 , DOI: 10.1016/j.enbuild.2024.115194
Lin Liu, Zihong Zhang, Shiying Lan, Xiaoyu Tian, Jing Liu, Wei Liao, Dan Wang

Towards the dual goals of energy conservation and outdoor thermal comfort, this study proposed a parametric-oriented optimization design technology for densely-built residential blocks based on the dynamic local energy balance (DLEB) model. The DLEB model was corrected by hourly error formulas based on the field measurement data conducted in Guangzhou, China, which used six local climate zone-derived spatial morphological parameters as inputs. Additionally, the corrected DLEB model was improved by adding dual-goal calculation modules of building energy consumption and physiologically equivalent temperature. Orthogonal experiments were designed considering five parameters: building density, floor, and the area ratios of greenland, woodland, and water. A comprehensive indicator (CI) reflecting lower building energy consumption and higher outdoor environmental thermal comfort was used to design the objective function. Then, the corrected DLEB model was used to calculate the hourly environmental parameters and the CI of different cases. Results found that wind-thermal environments were affected by background weather and spatial morphological parameters. The error formulas show higher fitting effects with the goodness of fit higher than 0.4. A parametric-oriented spatial optimization strategy for high-density residential blocks was formed by determining the suitable value ranges of each spatial variable. The recommended building density ranged from 0.45 to 0.5, building floors were 10 ∼ 20 floors, and the area ratio of Greenland and woodland ranged from 0.25 to 0.4. Building floors and density contributed 48 % and 43 % to the comprehensive indicator, respectively. This study provides theoretical and technical guidance in dual-goal densely built residential areas.
更新日期:2024-12-13
down
wechat
bug