当前位置:
X-MOL 学术
›
Energy Build.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A novel clustering based operating strategy of heat pump desiccant wheel system for low-humidity environments
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.enbuild.2024.115174 Yixiang Huang, Shaochen Tian, Haoran Liu, Lei Huang, Shangao Li, Qinbao Wang, Xing Su
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.enbuild.2024.115174 Yixiang Huang, Shaochen Tian, Haoran Liu, Lei Huang, Shangao Li, Qinbao Wang, Xing Su
In various industrial manufacturing scenarios, maintaining a low humidity environment with a low dew point temperature (DPT) is crucial. Significant energy consumption is incurred during dehumidification processes. The Heat Pump Desiccant Wheel (HPDW) system emerges as an effective solution to regulate indoor temperature and humidity under such conditions. To improve the energy efficiency of HPDW systems, this study proposes a load clustering-based methods to optimize operation and develop tailored strategies. A comparative analysis of operating strategies and model-based optimization for a selected low-humidity environment is conducted. The results reveal that strategies integrating outdoor humidity ratio with hybrid conditions are effective in achieving the desired low humidity environment. Under these strategies, the system’s indoor humidity failure duration is reduced to 48 h and 197 h annually, respectively. The low-humidity environment can be maintained at a maximum indoor humidity ratio of 4.0 g/kg DA and 4.5 g/kg DA, respectively. Furthermore, the load clustering-based strategy successfully decouples control parameters and enhances the dehumidification performance, particularly during heating season and transitional seasons, through improved regeneration processes. Additionally, adopting a non-minimum outdoor air volume strategy achieves a notable 8.3 % energy savings, equivalent to approximately 15,000 kWh. When applying a strategy based on minimum outdoor air flow, maximum indoor humidity ratio of 3.89 g/kg DA and system’s failure duration of 7 h can be achieved. The design outdoor condition in Shanghai, with a temperature of 36.8 °C and a humidity ratio of 26.13 g/kg DA, can be selected as the most unfavorable input parameters for system design and operation during the cooling season. This study offers practical insights into optimizing HPDW systems for energy-efficient dehumidification in low humidity industrial environments.
中文翻译:
一种适用于低湿度环境的热泵干燥剂转轮系统基于集群的新型运行策略
在各种工业制造场景中,保持低湿度环境和低露点温度 (DPT) 至关重要。除湿过程中会产生大量的能源消耗。热泵干燥轮 (HPDW) 系统成为在此类条件下调节室内温度和湿度的有效解决方案。为了提高 HPDW 系统的能源效率,本研究提出了一种基于负载集群的方法,以优化运行并制定量身定制的策略。对选定的低湿度环境进行操作策略和基于模型的优化的比较分析。结果表明,将室外湿度比与混合条件相结合的策略可有效实现所需的低湿度环境。在这些策略下,系统的室内湿度故障持续时间分别减少到每年 48 小时和 197 小时。低湿度环境可以保持在最大室内湿度比分别为 4.0 g/kg DA 和 4.5 g/kg DA。此外,基于负载聚类的策略通过改进的再生过程成功地解耦了控制参数并提高了除湿性能,尤其是在供暖季节和过渡季节。此外,采用非最小室外风量策略可显著节省 8.3% 的能源,相当于约 15,000 kWh。当应用基于最小室外气流的策略时,最大室内湿度比为 3.89 g/kg DA,系统故障持续时间为 7 h。设计室外条件在上海,温度为 36.8 °C,湿度比为 26。13 g/kg DA,可选择作为冷却季节系统设计和运行最不利的输入参数。本研究为优化 HPDW 系统以在低湿度工业环境中实现节能除湿提供了实用见解。
更新日期:2024-12-12
中文翻译:
一种适用于低湿度环境的热泵干燥剂转轮系统基于集群的新型运行策略
在各种工业制造场景中,保持低湿度环境和低露点温度 (DPT) 至关重要。除湿过程中会产生大量的能源消耗。热泵干燥轮 (HPDW) 系统成为在此类条件下调节室内温度和湿度的有效解决方案。为了提高 HPDW 系统的能源效率,本研究提出了一种基于负载集群的方法,以优化运行并制定量身定制的策略。对选定的低湿度环境进行操作策略和基于模型的优化的比较分析。结果表明,将室外湿度比与混合条件相结合的策略可有效实现所需的低湿度环境。在这些策略下,系统的室内湿度故障持续时间分别减少到每年 48 小时和 197 小时。低湿度环境可以保持在最大室内湿度比分别为 4.0 g/kg DA 和 4.5 g/kg DA。此外,基于负载聚类的策略通过改进的再生过程成功地解耦了控制参数并提高了除湿性能,尤其是在供暖季节和过渡季节。此外,采用非最小室外风量策略可显著节省 8.3% 的能源,相当于约 15,000 kWh。当应用基于最小室外气流的策略时,最大室内湿度比为 3.89 g/kg DA,系统故障持续时间为 7 h。设计室外条件在上海,温度为 36.8 °C,湿度比为 26。13 g/kg DA,可选择作为冷却季节系统设计和运行最不利的输入参数。本研究为优化 HPDW 系统以在低湿度工业环境中实现节能除湿提供了实用见解。