当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A privacy preserving multi-center federated learning framework for district heating forecast
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-12-10 , DOI: 10.1016/j.enbuild.2024.115164
Kais Dai, Esteban Fabello González, Rebeca Isabel García-Betances

This paper presents a privacy-preserving Multi-Center Federated Learning (MCFL) framework for district heating demand forecasting with a 24-hour prediction horizon. To evaluate the effectiveness of this framework, we conducted a comparative analysis across three models: a monolithic model, a traditional federated learning (FL) model, and the proposed MCFL model. Our results demonstrate that the MCFL model improves the prediction accuracy of the standard FL model by 13.86%, suggesting it as a promising enhancement in federated settings. Furthermore, MCFL is particularly well-suited for district heating forecasting, as it handles data heterogeneity, reinforces privacy protections, and supports scalability, making it an ideal choice for complex, distributed environments.

中文翻译:


一种用于区域供热预测的隐私保护多中心联邦学习框架



本文提出了一个具有 24 小时预测范围的区域供热需求预测的隐私保护多中心联邦学习 (MCFL) 框架。为了评估该框架的有效性,我们对三个模型进行了比较分析:整体模型、传统联邦学习 (FL) 模型和拟议的 MCFL 模型。我们的结果表明,MCFL 模型将标准 FL 模型的预测准确性提高了 13.86%,表明它在联合环境中是一个有前途的增强功能。此外,MCFL 特别适合区域供热预测,因为它可以处理数据异构性、加强隐私保护并支持可扩展性,使其成为复杂分布式环境的理想选择。
更新日期:2024-12-10
down
wechat
bug