当前位置:
X-MOL 学术
›
Finance Research Letters
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Within-regime volatility dynamics for observable- and Markov-switching score-driven models
Finance Research Letters ( IF 7.4 ) Pub Date : 2024-12-16 , DOI: 10.1016/j.frl.2024.106631 Szabolcs Blazsek, Dejun Kong, Samantha R. Shadoff
Finance Research Letters ( IF 7.4 ) Pub Date : 2024-12-16 , DOI: 10.1016/j.frl.2024.106631 Szabolcs Blazsek, Dejun Kong, Samantha R. Shadoff
We study the novel Markov-switching (MS) Beta-t -EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model, using within-regime volatility dynamics, similar to the recent observable-switching (OS) Beta-t -EGARCH model. We report in-sample results on the Standard & Poor’s 500 (S&P 500) and a random sample of 50 firms from the S&P 500 from March 1986 to July 2024. We compare the out-of-sample forecasting performances of OS-Beta-t -EGARCH and MS-Beta-t -EGARCH from May 2005 to July 2024 and confirm that OS-Beta-t -EGARCH is superior to MS-Beta-t -EGARCH.
中文翻译:
可观察和马尔可夫切换分数驱动模型的区内波动率动态
我们使用机制内波动性动力学研究了新颖的马尔可夫转换 (MS) Beta-t-EGARCH (指数广义自回归条件异方差性) 模型,类似于最近的可观察转换 (OS) Beta-t-EGARCH 模型。我们报告了标准普尔500指数(S&P 500)的样本结果,以及从1986年3月至2024年7月从S&P 500中随机抽取的50家公司。我们比较了 2005 年 5 月至 2024 年 7 月期间 OS-Beta-t-EGARCH 和 MS-Beta-t-EGARCH 的样本外预测性能,并确认 OS-Beta-t-EGARCH 优于 MS-Beta-t-EGARCH。
更新日期:2024-12-16
中文翻译:
可观察和马尔可夫切换分数驱动模型的区内波动率动态
我们使用机制内波动性动力学研究了新颖的马尔可夫转换 (MS) Beta-t-EGARCH (指数广义自回归条件异方差性) 模型,类似于最近的可观察转换 (OS) Beta-t-EGARCH 模型。我们报告了标准普尔500指数(S&P 500)的样本结果,以及从1986年3月至2024年7月从S&P 500中随机抽取的50家公司。我们比较了 2005 年 5 月至 2024 年 7 月期间 OS-Beta-t-EGARCH 和 MS-Beta-t-EGARCH 的样本外预测性能,并确认 OS-Beta-t-EGARCH 优于 MS-Beta-t-EGARCH。