当前位置: X-MOL 学术Finite Elem. Anal. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Finite element analysis-enabled optimization of process parameters in additive manufacturing
Finite Elements in Analysis and Design ( IF 3.5 ) Pub Date : 2024-12-17 , DOI: 10.1016/j.finel.2024.104282
Jingyi Wang, Panayiotis Papadopoulos

A design optimization framework is proposed for process parameters in additive manufacturing. A finite element approximation of the coupled thermomechanical model is used to simulate the fused deposition of heated material and compute the objective function for each analysis. Both gradient-based and gradient-free optimization methods are developed. The gradient-based approach, which results in a balance law-constrained optimization problem, requires sensitivities computed from the fully discretized finite element model. These sensitivities are derived and subsequently applied to a projected gradient-descent algorithm. For the gradient-free approach, two distinct algorithms are proposed: a search algorithm based on local variations and a Bayesian optimization algorithm using a Gaussian process. Two design optimization examples are considered in order to illustrate the effectiveness of these approaches and explore the range of their usefulness.

中文翻译:


有限元分析支持增材制造中的工艺参数优化



提出了增材制造工艺参数的设计优化框架。耦合热机械模型的有限元近似用于模拟加热材料的熔融沉积,并计算每次分析的目标函数。开发了基于梯度和无梯度的优化方法。基于梯度的方法会产生平衡定律约束的优化问题,需要从完全离散化的有限元模型计算灵敏度。这些灵敏度是派生出来的,随后应用于投影的梯度下降算法。对于无梯度方法,提出了两种不同的算法:基于局部变化的搜索算法和使用高斯过程的贝叶斯优化算法。为了说明这些方法的有效性并探索它们的有用范围,考虑了两个设计优化示例。
更新日期:2024-12-17
down
wechat
bug