当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unveiling the impact of nitrogen-doped graphene quantum dots on improving the photocatalytic performance of CuWO4 nanocomposite
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.apsusc.2024.162130 Parthivi Aloni, Prashanth Venkatesan, Arun Prakash Sundaresan, Deblina Roy, Rohit Kumar Ranjan, Ankit Sharma, Ruey-An Doong, N. Clament Sagaya Selvam
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.apsusc.2024.162130 Parthivi Aloni, Prashanth Venkatesan, Arun Prakash Sundaresan, Deblina Roy, Rohit Kumar Ranjan, Ankit Sharma, Ruey-An Doong, N. Clament Sagaya Selvam
In this study, nitrogen-doped graphene quantum dots (NGQD) decorated CuWO4 nanocomposite (NGQD-CuWO4) were synthesized for enhanced photocatalytic tetracycline (TC) degradation under visible light irradiation. The incorporation of NGQDs significantly increased light absorption, narrowed the band gap, and improved charge transfer in CuWO4, leading to enhanced photocatalytic efficiency. TEM analysis confirmed the successful integration of NGQDs with CuWO4, showing uniform dispersion and lattice fringes, while Raman spectra revealed the characteristic D and G bands of NGQDs, indicating their graphene-like properties. The optimal NGQD loading (3NGQD-CuWO4) achieved a degradation efficiency of 99 % within 90 min, exhibiting a three-fold increase in performance compared to pure CuWO4. Photocurrent measurements indicated that incorporating NGQD enhanced the charge separation in CuWO4 displaying the highest photocurrent density. The lowest charge transfer resistance observed in the hybrid photocatalyst is confirmed by electrochemical impedance spectroscopy (EIS), indicating the significant role of NGQD in increasing the charge transfer kinetics. Optical studies further demonstrated a significant red shift in the absorption spectrum and a reduction in the band gap from 2.43 eV for pure CuWO4 to 2.29 eV for the 3NGQD-CuWO4 composite. Kinetic studies indicated a pseudo-first-order reaction with a rate constant three times higher for NGQD-CuWO4 compared to CuWO4 alone. Hydroxyl radicals (•OH) were identified as the main reactive species responsible for degradation. This work highlights that NGQD incorporation makes CuWO4 an efficient, stable, and promising photocatalyst for environmental applications, particularly in treating pharmaceutical-contaminated water.
中文翻译:
揭示氮掺杂石墨烯量子点对提高 CuWO4 纳米复合材料光催化性能的影响
在本研究中,合成了氮掺杂石墨烯量子点 (NGQD) 修饰的 CuWO4 纳米复合材料 (NGQD-CuWO4),用于在可见光照射下增强光催化四环素 (TC) 降解。NGQD 的掺入显着增加了 CuWO4 中的光吸收,缩小了带隙,并改善了电荷转移,从而提高了光催化效率。TEM 分析证实了 NGQD 与 CuWO4 的成功整合,显示出均匀的色散和晶格条纹,而拉曼光谱揭示了 NGQD 的特征 D 和 G 带,表明它们具有类似石墨烯的特性。最佳 NGQD 负载 (3NGQD-CuWO4) 在 90 分钟内实现了 99% 的降解效率,与纯 CuWO4 相比,性能提高了三倍。光电流测量表明,加入 NGQD 增强了 CuWO4 中的电荷分离,显示出最高的光电流密度。电化学阻抗谱 (EIS) 证实了在混合光催化剂中观察到的最低电荷转移电阻,表明 NGQD 在增加电荷转移动力学方面发挥着重要作用。光学研究进一步表明,吸收光谱有明显的红移,带隙从纯 CuWO4 的 2.43 eV 降低到 3NGQD-CuWO4 复合材料的 2.29 eV。动力学研究表明,与单独的 CuWO4 相比,NGQD-CuWO4 的速率常数高出三倍的伪一级反应。羟基自由基 (•OH) 被确定为负责降解的主要反应性物质。 这项工作强调,NGQD 掺入使 CuWO4 成为一种高效、稳定且有前途的光催化剂,可用于环境应用,特别是在处理受药物污染的水方面。
更新日期:2024-12-20
中文翻译:
揭示氮掺杂石墨烯量子点对提高 CuWO4 纳米复合材料光催化性能的影响
在本研究中,合成了氮掺杂石墨烯量子点 (NGQD) 修饰的 CuWO4 纳米复合材料 (NGQD-CuWO4),用于在可见光照射下增强光催化四环素 (TC) 降解。NGQD 的掺入显着增加了 CuWO4 中的光吸收,缩小了带隙,并改善了电荷转移,从而提高了光催化效率。TEM 分析证实了 NGQD 与 CuWO4 的成功整合,显示出均匀的色散和晶格条纹,而拉曼光谱揭示了 NGQD 的特征 D 和 G 带,表明它们具有类似石墨烯的特性。最佳 NGQD 负载 (3NGQD-CuWO4) 在 90 分钟内实现了 99% 的降解效率,与纯 CuWO4 相比,性能提高了三倍。光电流测量表明,加入 NGQD 增强了 CuWO4 中的电荷分离,显示出最高的光电流密度。电化学阻抗谱 (EIS) 证实了在混合光催化剂中观察到的最低电荷转移电阻,表明 NGQD 在增加电荷转移动力学方面发挥着重要作用。光学研究进一步表明,吸收光谱有明显的红移,带隙从纯 CuWO4 的 2.43 eV 降低到 3NGQD-CuWO4 复合材料的 2.29 eV。动力学研究表明,与单独的 CuWO4 相比,NGQD-CuWO4 的速率常数高出三倍的伪一级反应。羟基自由基 (•OH) 被确定为负责降解的主要反应性物质。 这项工作强调,NGQD 掺入使 CuWO4 成为一种高效、稳定且有前途的光催化剂,可用于环境应用,特别是在处理受药物污染的水方面。