当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimized Gas–Liquid Transport via Local Flow Field Management for Efficient Overall Water Splitting
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-17 , DOI: 10.1021/acsenergylett.4c02892
Yingjie Ji, Shuyun Yao, Shiyu Wang, Jingxian Li, Yuanming Liu, Kang Ji, Zishan Hou, Xiaojun Wang, Weijie Fu, Lanlan Shi, Jiangzhou Xie, Zhiyu Yang, Yi-Ming Yan

Electrochemical water splitting is a key technique for sustainable hydrogen production, but its efficiency is often compromised by bubble formation during electrolysis. In this work, we introduce a new electrolyzer design that strategically optimizes gas and liquid flow distributions to facilitate rapid bubble removal, thereby enhancing the electrochemical process. By incorporating a hydrophobic and gas-venting layer, our design significantly shortens the bubble transfer path and reduces the level of accumulation. This advancement results in a voltage reduction of more than 50 mV and a decrease in performance fluctuations exceeding 50% compared with traditional systems. Through detailed optical analyses and finite element simulations, we further elucidate the effects of the gas–liquid transport, enabling high-performance electrolysis with a volumetric current density of 333 mA cm–3 at 1.8 V. These findings underscore the potential of local flow field management in advancing electrolyzer design and other electrochemical systems.

中文翻译:


通过本地流场管理优化气液传输,实现高效的整体水分解



电化学水分解是可持续制氢的关键技术,但其效率通常会因电解过程中形成气泡而受到影响。在这项工作中,我们引入了一种新的电解槽设计,该设计战略性地优化了气体和液体的流动分布,以促进快速去除气泡,从而增强电化学过程。通过加入疏水和排气层,我们的设计显著缩短了气泡转移路径并降低了积聚水平。与传统系统相比,这一进步导致电压降低超过 50 mV,性能波动减少超过 50%。通过详细的光学分析和有限元模拟,我们进一步阐明了气-液传输的影响,从而实现了在 1.8 V 下体积电流密度为 333 mA cm–3 的高性能电解。这些发现强调了局部流场管理在推进电解槽设计和其他电化学系统方面的潜力。
更新日期:2024-12-18
down
wechat
bug