当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deciphering the Interfacial Li-Ion Migration Kinetics of Ni-Rich Cathodes in Sulfide-Based All-Solid-State Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-18 , DOI: 10.1021/acsami.4c17233 Chenxi Gao, Xiao Xu, Tiansheng Bai, Jun Cheng, Zhen Zeng, Hongqiang Zhang, Naixuan Ci, Wei Zhai, Qing Ma, Jingyu Lu, Jun Ma, Lijie Ci, Deping Li
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-18 , DOI: 10.1021/acsami.4c17233 Chenxi Gao, Xiao Xu, Tiansheng Bai, Jun Cheng, Zhen Zeng, Hongqiang Zhang, Naixuan Ci, Wei Zhai, Qing Ma, Jingyu Lu, Jun Ma, Lijie Ci, Deping Li
Nickel-rich layered oxide with high reversible capacity and high working potentials is a prevailing cathode for high-energy-density all-solid-state lithium batteries (ASSLBs). However, compared to the liquid battery system, ASSLBs suffer from poor Li-ion migration kinetics, severe side reactions, and undesired formation of space charge layers, which result in restricted capacity release and limited rate capability. In this work, we reveal that the capacity loss lies in the H2–H3 phase transition period, and we propose that the inconsistent interfacial Li-ion migration is the arch-criminal. We introduce Si doping to stabilize the bulk structure and Li4SiO4 fast ionic conductor coating to regulate the interfacial behaviors between the Ni-rich cathode and sulfide-based solid electrolyte Li6PS5Cl. The modified NCM@LSO-2||LPSCl||Li–In ASSLBs deliver a high reversible capacity of 183.5 mA h g–1 at 0.1C, 30.3% higher than the bare NCM811 electrode. Besides, the interfacial regulation strategy enables the operation at a high rate of 5.0C and achieves a high capacity retention ratio of ∼85.8% after 500 cycles at 1.0C. Furthermore, the underlying mechanisms are well investigated through kinetic analyses and theoretical simulations. This work provides an in-depth understanding on the interfacial degradations between Ni-rich cathodes and sulfide-based all-solid-state electrolytes from the view of kinetic limitations and offers potential solutions.
中文翻译:
破译硫化物基全固态电池中富镍阴极的界面锂离子迁移动力学
具有高可逆容量和高工作电位的富镍层状氧化物是高能量密度全固态锂电池 (ASSLB) 的主要阴极。然而,与液态电池系统相比,ASSLB 的锂离子迁移动力学较差、严重的副反应以及空间充电层的不良形成,从而导致容量释放受限和倍率能力受限。在这项工作中,我们揭示了容量损失在于 H2-H3 相变期,并提出不一致的界面锂离子迁移是罪魁祸首。我们引入了 Si 掺杂来稳定本体结构,并引入了 Li4SiO4 快速离子导体涂层来调节富镍阴极和硫化物基固体电解质 Li6PS5Cl 之间的界面行为。修改后的 NCM@LSO-2||LPSCl ||Li–In ASSLB 在 0.1C 时提供 183.5 mA h g–1 的高可逆容量,比裸露的 NCM811 电极高 30.3%。此外,界面调节策略能够在 5.0C 的高速率下运行,并在 1.0C 下循环 500 次后实现 ∼85.8% 的高容量保持率。此外,通过动力学分析和理论模拟,对潜在机制进行了很好的研究。这项工作从动力学限制的角度深入了解了富镍阴极和硫化物基全固态电解质之间的界面降解,并提供了潜在的解决方案。
更新日期:2024-12-18
中文翻译:
破译硫化物基全固态电池中富镍阴极的界面锂离子迁移动力学
具有高可逆容量和高工作电位的富镍层状氧化物是高能量密度全固态锂电池 (ASSLB) 的主要阴极。然而,与液态电池系统相比,ASSLB 的锂离子迁移动力学较差、严重的副反应以及空间充电层的不良形成,从而导致容量释放受限和倍率能力受限。在这项工作中,我们揭示了容量损失在于 H2-H3 相变期,并提出不一致的界面锂离子迁移是罪魁祸首。我们引入了 Si 掺杂来稳定本体结构,并引入了 Li4SiO4 快速离子导体涂层来调节富镍阴极和硫化物基固体电解质 Li6PS5Cl 之间的界面行为。修改后的 NCM@LSO-2||LPSCl ||Li–In ASSLB 在 0.1C 时提供 183.5 mA h g–1 的高可逆容量,比裸露的 NCM811 电极高 30.3%。此外,界面调节策略能够在 5.0C 的高速率下运行,并在 1.0C 下循环 500 次后实现 ∼85.8% 的高容量保持率。此外,通过动力学分析和理论模拟,对潜在机制进行了很好的研究。这项工作从动力学限制的角度深入了解了富镍阴极和硫化物基全固态电解质之间的界面降解,并提供了潜在的解决方案。