当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic Effect of Anchoring Transitional/Interstitial Sites on Boosting Structural and Electrochemical Stability of O3-Type Layered Sodium Oxides
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-18 , DOI: 10.1021/acsami.4c17755 Ke Xue, Shenglong Yang, Feiyan Lai, Xiaohui Zhang, Yishun Xie, Guangchang Yang, Kai Pan, Qingyu Li, Hongqiang Wang
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-12-18 , DOI: 10.1021/acsami.4c17755 Ke Xue, Shenglong Yang, Feiyan Lai, Xiaohui Zhang, Yishun Xie, Guangchang Yang, Kai Pan, Qingyu Li, Hongqiang Wang
O3-type layered oxides are considered promising cathode materials for next-generation high-energy-density sodium-ion batteries (SIBs). However, they face challenges, such as low rate capacity and poor cycling stability, which arise from structural deformation, sluggish Na+ diffusion kinetics, and interfacial side reactions. Herein, a synergistic substitution strategy for transitional and interstitial sites was adopted to improve the structure stability and Na+ diffusion kinetics of the O3-type NaNi0.2Fe0.4Mn0.4O2. Simulation results indicate that Co3+/B3+ codoping effectively lowers the Na+ migration energy barrier. In addition, the synergistic effect of Co3+/B3+ codoping provides ultralow lattice strain during repeated Na+ deintercalation/intercalation. In situ characterization verified that the complex phase transformation during charge and discharge was suppressed, thereby significantly improving the structural stability. At 1 and 3 C, the capacity retention of the modified O3–Na(Ni0.2Fe0.4Mn0.4)0.96Co0.04B0.02O2 (NFMCB) improved from 29.6% and 1.7% to 86.7% and 88.6% after 200 cycles, respectively. Even at 10 C, it could still produce 107.2 mAh·g–1. Furthermore, full cells assembled with this material and commercial hard carbon exhibit a high energy density of 316.2 Wh·kg–1 and a capacity retention of 80.8% after 200 cycles at 1 C. It is expected that this strategy will facilitate the commercialization of O3-type layered oxides.
中文翻译:
锚定过渡/间隙位点对提高 O3 型层状氧化钠结构和电化学稳定性的协同作用
O3 型层状氧化物被认为是下一代高能量密度钠离子电池 (SIB) 的有前途的正极材料。然而,它们面临着结构变形、Na+ 扩散动力学缓慢和界面副反应引起的挑战,例如低速率容量和不良循环稳定性。在此,采用了过渡位点和间隙位点的协同取代策略,以提高 O3 型 NaNi0.2Fe0.4Mn0.4O2 的结构稳定性和 Na+ 扩散动力学。仿真结果表明,Co3+/B3+ 共掺杂有效降低了 Na+ 迁移能垒。此外,Co3+/B3+ 共掺杂的协同效应在重复的 Na+ 脱嵌/插层过程中提供了超低的晶格应变。原位表征验证了充电和放电过程中的复杂相变受到抑制,从而显著提高了结构稳定性。在 1 和 3 C 下,改性 O3–Na(Ni0.2Fe0.4 Mn 0.4)0.96Co0.04B0.02O2 (NFMCB) 的容量保持率在 200 次循环后分别从 29.6% 和 1.7% 提高到 86.7% 和 88.6%。即使在 10 C 下,它仍然可以产生 107.2 mAh·g–1。此外,用这种材料和商用硬碳组装的全电池在 1 C 下循环 200 次后表现出 316.2 Wh·kg–1 的高能量密度和 80.8% 的容量保持率。预计该策略将促进 O3 型层状氧化物的商业化。
更新日期:2024-12-18
中文翻译:
锚定过渡/间隙位点对提高 O3 型层状氧化钠结构和电化学稳定性的协同作用
O3 型层状氧化物被认为是下一代高能量密度钠离子电池 (SIB) 的有前途的正极材料。然而,它们面临着结构变形、Na+ 扩散动力学缓慢和界面副反应引起的挑战,例如低速率容量和不良循环稳定性。在此,采用了过渡位点和间隙位点的协同取代策略,以提高 O3 型 NaNi0.2Fe0.4Mn0.4O2 的结构稳定性和 Na+ 扩散动力学。仿真结果表明,Co3+/B3+ 共掺杂有效降低了 Na+ 迁移能垒。此外,Co3+/B3+ 共掺杂的协同效应在重复的 Na+ 脱嵌/插层过程中提供了超低的晶格应变。原位表征验证了充电和放电过程中的复杂相变受到抑制,从而显著提高了结构稳定性。在 1 和 3 C 下,改性 O3–Na(Ni0.2Fe0.4 Mn 0.4)0.96Co0.04B0.02O2 (NFMCB) 的容量保持率在 200 次循环后分别从 29.6% 和 1.7% 提高到 86.7% 和 88.6%。即使在 10 C 下,它仍然可以产生 107.2 mAh·g–1。此外,用这种材料和商用硬碳组装的全电池在 1 C 下循环 200 次后表现出 316.2 Wh·kg–1 的高能量密度和 80.8% 的容量保持率。预计该策略将促进 O3 型层状氧化物的商业化。