当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An agarose fluidic chip for high-throughput in toto organoid imaging.
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-12-17 , DOI: 10.1039/d4lc00459k
Sarah De Beuckeleer,Andres Vanhooydonck,Johanna Van Den Daele,Tim Van De Looverbosch,Bob Asselbergh,Hera Kim,Coen Campsteijn,Peter Ponsaerts,Regan Watts,Winnok H De Vos

Modern cell and developmental biology increasingly relies on 3D cell culture systems such as organoids. However, routine interrogation with microscopy is often hindered by tedious, non-standardized sample mounting, limiting throughput. To address these bottlenecks, we have developed a pipeline for imaging intact organoids in flow, utilizing a transparent agarose fluidic chip that enables efficient and consistent recordings with theoretically unlimited throughput. The chip, cast from a custom-designed 3D-printed mold, is coupled to a mechanically controlled syringe pump for fast and precise sample positioning. We benchmarked this setup on a commercial digitally scanned light sheet microscope with cleared glioblastoma spheroids. Spheroids of varying sizes were positioned in the field of view with micrometer-level stability, achieving a throughput of 40 one-minute recordings per hour. We further showed that sample positioning could be automated through online feedback microscopy. The optical quality of the agarose chip outperformed FEP tubing, glass channels and PDMS casts for the clearing agents used, as demonstrated by image contrast profiles of spheroids stained with a fluorescent nuclear counterstain and further emphasized by the resolution of fine microglial ramifications within cerebral organoids. The retention of image quality throughout 500 μm-sized spheroids enabled comprehensive spatial mapping of live and dead cells based on their nuclear morphology. Finally, imaging a batch of LMNA knockout vs. wildtype astrocytoma spheroids revealed significant differences in their DNA damage response, underscoring the system's sensitivity and throughput. Overall, the fluidic chip design provides a cost-effective, accessible, and efficient solution for high-throughput organoid imaging.

中文翻译:


一种琼脂糖流体芯片,用于 toto 类器官成像中的高通量。



现代细胞和发育生物学越来越依赖 3D 细胞培养系统,例如类器官。然而,显微镜的常规询问经常受到繁琐、非标准化样品安装的阻碍,从而限制了通量。为了解决这些瓶颈,我们开发了一种用于对流中完整类器官进行成像的管道,利用透明琼脂糖流体芯片,以理论上无限的通量实现高效、一致的记录。芯片由定制设计的 3D 打印模具铸造而成,与机械控制的注射泵相连,以实现快速、精确的样品定位。我们在具有透明胶质母细胞瘤球体的商用数字扫描光片显微镜上对此设置进行了基准测试。不同大小的球体以微米级的稳定性放置在视场中,实现了每小时 40 次 1 分钟记录的吞吐量。我们进一步表明,样品定位可以通过在线反馈显微镜实现自动化。琼脂糖芯片的光学质量优于 FEP 管、玻璃通道和 PDMS 铸型,如用荧光核复染剂染色的球状体的图像对比曲线所示,并通过脑类器官内细小胶质细胞分支的分辨率进一步强调。在整个 500 μm 大小的球状体中保持图像质量,从而能够根据细胞核形态对活细胞和死细胞进行全面的空间映射。最后,对一批 LMNA 敲除与野生型星形细胞瘤球体的成像显示,它们的 DNA 损伤反应存在显著差异,强调了系统的灵敏度和通量。 总体而言,流体芯片设计为高通量类器官成像提供了一种经济高效、可访问且高效的解决方案。
更新日期:2024-12-17
down
wechat
bug