当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Recent Progress and Challenges of Li‐Rich Mn‐Based Cathode Materials for Solid‐State Lithium‐Ion Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-17 , DOI: 10.1002/adma.202410006 Qiqiang Huang, Jinquan Liu, Xinman Chen, Peng Zhang, Languang Lu, Dongsheng Ren, Minggao Ouyang, Xiang Liu
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-17 , DOI: 10.1002/adma.202410006 Qiqiang Huang, Jinquan Liu, Xinman Chen, Peng Zhang, Languang Lu, Dongsheng Ren, Minggao Ouyang, Xiang Liu
Li‐rich Mn‐based (LRM) cathode materials, characterized by their high specific capacity (>250 mAh g− ¹) and cost‐effectiveness, represent promising candidates for next‐generation lithium‐ion batteries. However, their commercial application is hindered by rapid capacity degradation and voltage fading, which can be attributed to transition metal migration, lattice oxygen release, and the toxicity of Mn ions to the anode solid electrolyte interphase (SEI). Recently, the application of LRM cathode in all‐solid‐state batteries (ASSBs) has garnered significant interest, as this approach eliminates the liquid electrolyte, thereby suppressing transition metal crosstalk and solid–liquid interfacial side reactions. This review first examines the historical development, crystal structure, and mechanisms underlying the high capacity of LRM cathode materials. It then introduces the current challenges facing LRM cathode and the associated degradation mechanisms and proposes solutions to these issues. Additionally, it summarizes recent research on LRM materials in ASSBs and suggests strategies for improvement. Finally, the review discusses future research directions for LRM cathode materials, including optimized material design, bulk doping, surface coating, developing novel solid electrolytes, and interface engineering. This review aims to provide further insights and new perspectives on applying LRM cathode materials in ASSBs.
中文翻译:
富锂锰基正极材料在固态锂离子电池中的应用进展与挑战
富锂锰基 (LRM) 正极材料具有高比容量 (>250 mAh g−¹) 和成本效益的特点,是下一代锂离子电池的有前途的候选者。然而,它们的商业应用受到容量快速下降和电压衰减的阻碍,这可归因于过渡金属迁移、晶格氧释放以及 Mn 离子对阳极固体电解质界面 (SEI) 的毒性。最近,LRM 阴极在全固态电池 (ASSB) 中的应用引起了人们的极大兴趣,因为这种方法消除了液体电解质,从而抑制了过渡金属串扰和固液界面侧反应。本文首先研究了 LRM 正极材料高容量的历史发展、晶体结构和机制。然后,它介绍了 LRM 阴极当前面临的挑战以及相关的降解机制,并提出了这些问题的解决方案。此外,它还总结了 ASSB 中 LRM 材料的最新研究,并提出了改进策略。最后,本文讨论了 LRM 正极材料的未来研究方向,包括优化材料设计、体掺杂、表面涂层、新型固体电解质开发和界面工程。本文旨在为 LRM 正极材料在 ASSB 中的应用提供进一步的见解和新的视角。
更新日期:2024-12-17
中文翻译:
富锂锰基正极材料在固态锂离子电池中的应用进展与挑战
富锂锰基 (LRM) 正极材料具有高比容量 (>250 mAh g−¹) 和成本效益的特点,是下一代锂离子电池的有前途的候选者。然而,它们的商业应用受到容量快速下降和电压衰减的阻碍,这可归因于过渡金属迁移、晶格氧释放以及 Mn 离子对阳极固体电解质界面 (SEI) 的毒性。最近,LRM 阴极在全固态电池 (ASSB) 中的应用引起了人们的极大兴趣,因为这种方法消除了液体电解质,从而抑制了过渡金属串扰和固液界面侧反应。本文首先研究了 LRM 正极材料高容量的历史发展、晶体结构和机制。然后,它介绍了 LRM 阴极当前面临的挑战以及相关的降解机制,并提出了这些问题的解决方案。此外,它还总结了 ASSB 中 LRM 材料的最新研究,并提出了改进策略。最后,本文讨论了 LRM 正极材料的未来研究方向,包括优化材料设计、体掺杂、表面涂层、新型固体电解质开发和界面工程。本文旨在为 LRM 正极材料在 ASSB 中的应用提供进一步的见解和新的视角。