当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cooperative Multiscale‐Assembly for Directional and Hierarchical Growth of Highly Oriented Porous Organic Cage Single‐Crystal Microtubes and Arrays
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2024-12-17 , DOI: 10.1002/anie.202421523 Jian-Ke Sun, Si-Hua Liu, Ke Zhao, Jun-Hao Zhou, Kang Dong, Hui Ai, Pai Liu, Jing-Wang Cui, Yun-Hong Zhang, Josep Puigmartí-Luis
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2024-12-17 , DOI: 10.1002/anie.202421523 Jian-Ke Sun, Si-Hua Liu, Ke Zhao, Jun-Hao Zhou, Kang Dong, Hui Ai, Pai Liu, Jing-Wang Cui, Yun-Hong Zhang, Josep Puigmartí-Luis
The directional assembly of porous organic molecules into long‐range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale‐assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation. Concurrently, at the mesoscopic level, convective flow in the double‐solvent system directed the spatial distribution of nuclei species, followed by diffusion limited growth, leading to the directional formation of single‐crystal microtubes. By precisely controlling the direction of convective flow, the nanocages were successfully organized into 2D and 3D single‐crystal microtube arrays while maintaining oriented micropores. This hierarchical porous architecture enhanced mass transfer, as confirmed by adsorption measurements. Interestingly, such 3D hierarchical microtube arrays can be utilized to immobilize Pd clusters and enzymes (lipase or Glucose oxidase) within the micro‐ and macropores, respectively, showing a 3.8‐ to 4‐fold enhancement in one‐pot tandem reaction activity compared to physical mixtures of individual analogues.
中文翻译:
用于高度定向多孔有机笼单晶微管和阵列定向和分层生长的协作多尺度组装
多孔有机分子定向组装成长程有序结构,具有受控的多级孔隙率和具有明确空间排列的定向孔通道,是化学和材料科学的一个基本挑战。在此,使用多孔有机笼作为起始单元,我们提出了一种协作式多尺度组装策略,能够在一个步骤中同时对齐孔通道和定向分层生长。在微观水平上,我们采用双溶剂来操纵微孔四面体 [4+6] 亚胺笼(CC1 和 CC3)的分子间堆积,从而产生孔通道取向。同时,在介观水平上,双溶剂系统中的对流引导了核种类的空间分布,然后是扩散受限的生长,导致单晶微管的定向形成。通过精确控制对流的方向,纳米笼成功地组织成 2D 和 3D 单晶微管阵列,同时保持定向微孔。这种分层多孔结构增强了传质,吸附测量证实了这一点。有趣的是,这种 3D 分层微管阵列可用于分别固定在微孔和大孔内的 Pd 簇和酶(脂肪酶或葡萄糖氧化酶),与单个类似物的物理混合物相比,一锅串联反应活性提高了 3.8 至 4 倍。
更新日期:2024-12-17
中文翻译:
用于高度定向多孔有机笼单晶微管和阵列定向和分层生长的协作多尺度组装
多孔有机分子定向组装成长程有序结构,具有受控的多级孔隙率和具有明确空间排列的定向孔通道,是化学和材料科学的一个基本挑战。在此,使用多孔有机笼作为起始单元,我们提出了一种协作式多尺度组装策略,能够在一个步骤中同时对齐孔通道和定向分层生长。在微观水平上,我们采用双溶剂来操纵微孔四面体 [4+6] 亚胺笼(CC1 和 CC3)的分子间堆积,从而产生孔通道取向。同时,在介观水平上,双溶剂系统中的对流引导了核种类的空间分布,然后是扩散受限的生长,导致单晶微管的定向形成。通过精确控制对流的方向,纳米笼成功地组织成 2D 和 3D 单晶微管阵列,同时保持定向微孔。这种分层多孔结构增强了传质,吸附测量证实了这一点。有趣的是,这种 3D 分层微管阵列可用于分别固定在微孔和大孔内的 Pd 簇和酶(脂肪酶或葡萄糖氧化酶),与单个类似物的物理混合物相比,一锅串联反应活性提高了 3.8 至 4 倍。