当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Substituting Benzodithiophene with Benzodifuran in Carboxylate-Containing Polymer for High-Performance Organic Solar Cells
Macromolecules ( IF 5.1 ) Pub Date : 2024-12-16 , DOI: 10.1021/acs.macromol.4c02123
Peiqing Cong, Mengzhen Du, Ailing Tang, Xianda Li, Zhi Zheng, Yitong Lei, Qing Guo, Xiangnan Sun, Dan Deng, Erjun Zhou

Low-cost carboxylate-modified thiophene-based polymers show promising potential in organic solar cells (OSCs). Further optimizing the film morphology via simple molecular engineering to improve their power conversion efficiencies (PCEs) is significant in pursuing a cost-effective balance. Herein, we developed a new wide-bandgap polymer, TTC-F-BDF, by copolymerizing benzodifuran (BDF) with carboxylate-modified thieno[3,2-b]thiophene (TTC), which is derived from the counterpart polymer, TTC-F, which contains benzodithiophene (BDT) units. Incorporating BDF can effectively tailor molecular aggregation and packing order to optimize film morphology, thus improving charge transport, recombination, and collection processes, ultimately boosting the fill factor (FF) and PCE. The TTC-F-BDF: L8-BO-based OSCs achieved a PCE of up to 16.9% with an enhanced FF of 0.75, among the top PCE values for the carboxylate-containing copolymer-based OSCs. As a control, the TTC-F: L8-BO blends showed a PCE of 15.1%, with a moderate FF of 0.67. In Cl-BTA3 systems, TTC-F-BDF attained a higher PCE of 11.2%, compared with TTC-F (PCE = 10.0%), attributed to the improved FF (0.74 vs 0.65). Besides that, replacing BDT with a cheap BDF unit also contributes to reducing production costs. This work provides a simple and effective molecular design strategy to optimize film morphology for efficiency breakthrough in carboxylate-containing photovoltaic polymers.

中文翻译:


在含羧酸盐聚合物中用苯并二噻吩取代苯并二噻吩用于高性能有机太阳能电池



低成本羧酸盐改性的噻吩基聚合物在有机太阳能电池 (OSC) 中显示出广阔的潜力。通过简单的分子工程进一步优化薄膜形态以提高其功率转换效率 (PCE) 对于追求具有成本效益的平衡具有重要意义。在此,我们通过将苯并二呋喃 (BDF) 与羧酸盐改性的噻吩并[3,2-b]噻吩 (TTC) 共聚,开发了一种新的宽带隙聚合物 TTC-F-BDF,TTC-F-BDF 源自含有苯并二噻吩 (BDT) 单元的对应聚合物 TTC-F。掺入 BDF 可以有效地定制分子聚集和堆积顺序以优化薄膜形态,从而改善电荷传输、复合和收集过程,最终提高填充因子 (FF) 和 PCE。TTC-F-BDF:基于 L8-BO 的 OSC 实现了高达 16.9% 的 PCE,FF 提高了 0.75,在含羧酸盐的共聚物基 OSC 中名列前茅。作为对照,TTC-F:L8-BO 混合物的 PCE 为 15.1%,中等 FF 为 0.67。在 Cl-BTA3 系统中,与 TTC-F (PCE = 10.0%) 相比,TTC-F-BDF 的 PCE 提高了 11.2%,这归因于 FF 的改善 (0.74 vs 0.65)。除此之外,用廉价的 BDF 装置代替 BDT 也有助于降低生产成本。这项工作提供了一种简单有效的分子设计策略,以优化薄膜形态,以突破含羧酸盐光伏聚合物的效率。
更新日期:2024-12-17
down
wechat
bug