Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deciphering Oxidation-Dominated Abnormal Rheology to Design Performance-Stable Liquid-Metal-Based Nanofluids for Transmission Applications
Langmuir ( IF 3.7 ) Pub Date : 2024-12-16 , DOI: 10.1021/acs.langmuir.4c04055 Jiajun Jiang, Shuaihang Pan, Robert G. Parker, Xian Meng, Tianlu Wang, Daotong Chen, Chunxia Lin, Xiaoming Cai, Jiajun Zhu, Changli Cai, Zhangyong Wu
Langmuir ( IF 3.7 ) Pub Date : 2024-12-16 , DOI: 10.1021/acs.langmuir.4c04055 Jiajun Jiang, Shuaihang Pan, Robert G. Parker, Xian Meng, Tianlu Wang, Daotong Chen, Chunxia Lin, Xiaoming Cai, Jiajun Zhu, Changli Cai, Zhangyong Wu
With global decarbonization urgency for sustainability, enhancing the service stability of liquid metals (LMs) and reducing their oxidation-induced failures are crucial. The oxidation of LMs can adversely affect the fluidity required for hydraulic transmission, thermal management, and other transport scenarios. Given the importance, we have fabricated an LM-based SiC/graphene-Mo nanofluid (LMNF) and compared the rheological behavior to pure LM under an oxidative atmospheric environment. Using an omni-spectrum rotary rheometer and a water bath ultrasonic technique, we quantified a more stable rheological performance in our LMNFs and elucidated how it linked to LMNFs’ phase interactions and oxidation. Their temperature–viscosity characteristics are less susceptible to dealloying-accompanied severe oxidation because the nanophase-enabled strong interfacial bonding by SiC, graphene, and Mo gives LMNFs a more viscoelastic solid nature. With these observations, a performance-predicting model, validated through real hydraulic transmission demonstrations, is developed to decipher the relationship among oxidation-influenced rheological performance like viscosity, temperature, and nanophase and guide LMNF design. This model provides a robust framework to fabricate LMNFs for long-term applications with a stable performance.
中文翻译:
破译氧化主导的异常流变学,为传输应用设计性能稳定的液态金属基纳米流体
随着全球脱碳对可持续发展的紧迫性,提高液态金属 (LM) 的服务稳定性并减少其氧化引起的故障至关重要。LM 的氧化会对液压传动、热管理和其他运输场景所需的流动性产生不利影响。鉴于其重要性,我们制造了一种基于 LM 的 SiC/石墨烯-Mo 纳米流体 (LMNF),并将氧化大气环境下的流变行为与纯 LM 进行了比较。使用全光谱旋转流变仪和水浴超声技术,我们量化了 LMNF 中更稳定的流变性能,并阐明了它与 LMNF 的相相互作用和氧化的关系。它们的温度-粘度特性不易受到脱合金伴随的严重氧化的影响,因为 SiC、石墨烯和 Mo 的纳米相实现的强界面键使 LMNF 具有更粘弹性的固体性质。利用这些观察结果,开发了一个性能预测模型,该模型通过实际液压传动演示进行验证,以破译受氧化影响的流变性能(如粘度、温度和纳米相)之间的关系,并指导 LMNF 设计。该模型提供了一个强大的框架,用于制造性能稳定的长期应用 LMNF。
更新日期:2024-12-17
中文翻译:
破译氧化主导的异常流变学,为传输应用设计性能稳定的液态金属基纳米流体
随着全球脱碳对可持续发展的紧迫性,提高液态金属 (LM) 的服务稳定性并减少其氧化引起的故障至关重要。LM 的氧化会对液压传动、热管理和其他运输场景所需的流动性产生不利影响。鉴于其重要性,我们制造了一种基于 LM 的 SiC/石墨烯-Mo 纳米流体 (LMNF),并将氧化大气环境下的流变行为与纯 LM 进行了比较。使用全光谱旋转流变仪和水浴超声技术,我们量化了 LMNF 中更稳定的流变性能,并阐明了它与 LMNF 的相相互作用和氧化的关系。它们的温度-粘度特性不易受到脱合金伴随的严重氧化的影响,因为 SiC、石墨烯和 Mo 的纳米相实现的强界面键使 LMNF 具有更粘弹性的固体性质。利用这些观察结果,开发了一个性能预测模型,该模型通过实际液压传动演示进行验证,以破译受氧化影响的流变性能(如粘度、温度和纳米相)之间的关系,并指导 LMNF 设计。该模型提供了一个强大的框架,用于制造性能稳定的长期应用 LMNF。