当前位置:
X-MOL 学术
›
Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Engineering Phages to Fight Multidrug-Resistant Bacteria
Chemical Reviews ( IF 51.4 ) Pub Date : 2024-12-16 , DOI: 10.1021/acs.chemrev.4c00681 Huan Peng, Irene A. Chen, Udi Qimron
Chemical Reviews ( IF 51.4 ) Pub Date : 2024-12-16 , DOI: 10.1021/acs.chemrev.4c00681 Huan Peng, Irene A. Chen, Udi Qimron
Facing the global “superbug” crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
中文翻译:
工程化噬菌体对抗多重耐药细菌
面对由于抗生素耐药性的出现和选择而导致的全球“超级细菌”危机,噬菌体是最有前途的解决方案之一。对抗多重耐药细菌需要精确诊断细菌病原体和特异性细胞杀伤。与传统抗菌剂相比,噬菌体具有几个潜在优势,例如宿主特异性、自扩增、易于生产、低毒性以及生物膜降解。然而,狭窄的宿主范围、未表征的特性以及天然噬菌体指数级复制和进化的潜在风险,目前限制了它们的应用。工程噬菌体不仅可以增强宿主细菌的范围并提高噬菌体的功效,还可以赋予新功能。本文首先总结了主要的噬菌体工程技术,包括化学修饰和基因工程。后续部分讨论了通过合成生物学和纳米技术的跨学科方法,工程噬菌体在细菌病原体检测和消融中的应用。我们讨论了正在进行的噬菌体工程学病原体控制探索的未来方向和持续挑战。
更新日期:2024-12-17
中文翻译:
工程化噬菌体对抗多重耐药细菌
面对由于抗生素耐药性的出现和选择而导致的全球“超级细菌”危机,噬菌体是最有前途的解决方案之一。对抗多重耐药细菌需要精确诊断细菌病原体和特异性细胞杀伤。与传统抗菌剂相比,噬菌体具有几个潜在优势,例如宿主特异性、自扩增、易于生产、低毒性以及生物膜降解。然而,狭窄的宿主范围、未表征的特性以及天然噬菌体指数级复制和进化的潜在风险,目前限制了它们的应用。工程噬菌体不仅可以增强宿主细菌的范围并提高噬菌体的功效,还可以赋予新功能。本文首先总结了主要的噬菌体工程技术,包括化学修饰和基因工程。后续部分讨论了通过合成生物学和纳米技术的跨学科方法,工程噬菌体在细菌病原体检测和消融中的应用。我们讨论了正在进行的噬菌体工程学病原体控制探索的未来方向和持续挑战。