当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selective Compatibility of High-Entropy Electrolytes for Low-Temperature Aqueous Zinc–Iodine Batteries
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-16 , DOI: 10.1021/acssuschemeng.4c06557
Mengdan Tian, Chuanzheng Zhu, Kun Luo

Aqueous zinc-ion batteries (AZIBs) have attracted massive interest on account of their environmental friendliness, low price, and high security. Nevertheless, the application of AZIBs is seriously constrained by the high liquid–solid transition temperature of aqueous electrolytes, which is strongly related to the water network connected through hydrogen bonds (HBs). Another critical technical issue is to explore the appropriate electrode material compatible with a low-temperature aqueous electrolyte. In order to ensure the battery works properly at low-temperature conditions, a high-entropy electrolyte (HEE) with multicomponent perchlorate salts, (Zn, Ca, Mg, Li)ClO4, is developed. The calorimetric analysis indicates that the HEE exhibits an extremely low liquid–glass transition temperature (−114 °C). Structural characterizations using Raman, FTIR, and NMR spectroscopy indicate that the introduction of multicomponent perchlorate salts into the aqueous electrolyte breaks the initial water network by the formation of M···(H2O)n···ClO4 (M is Zn2+, Ca2+, Mg2+ or Li+) configurations, and the HEE therefore remains unfrozen even at −70 °C. The in situ viscosity measurement indicates the HEE has a viscosity of 13.8 mPa S at −70 °C. The electrochemical measurements indicate that the ionic conductivity of the HEE is 22.6 mS cm–1 at 25 °C and 2.7 mS cm–1 at −70 °C, and it has excellent electrochemical compatibility with Zn metal upon cycling Zn||Zn symmetric cells. The compatibility of the HEE and different electrode materials, particularly vanadate oxide with preinserted cations (KVO) and a carbon composite material with iodine (CCM/I2) in this study, is systematically investigated, and the results of electrochemical measurements indicate the HEE shows the selectivity of battery systems. The KVO|HEE|Zn battery exhibits poor cycling stability at room temperature (only 33 mA h g–1 after 5,000 cycles at 5.0 A g–1), while the CCM-I2|HEE|Zn battery displays a capacity of 182 mA h g–1 at 100 mA g–1 in the first cycle and superior cycling performances (102 mA h g–1 after 5,000 cycles at 5.0 A g–1). Low-temperature electrochemical measurements demonstrate that the battery system with the HEE exhibits enhanced electrochemical performances at −70 °C when compared with the binary electrolyte system (Zn, 3Ca)ClO4. This work reveals the significance of electrode/electrolyte adaptability on the electrochemical performances of AZIBs and provides valuable insights for constructing low-temperature electrolytes using a multicomponent high-entropy strategy.

中文翻译:


低温水系锌碘电池的高熵电解质的选择性相容性



水系锌离子电池 (AZIB) 因其环保、低价格和高安全性而引起了广泛关注。然而,AZIBs 的应用受到水性电解质高液固转变温度的严重限制,这与通过氢键 (HBs) 连接的水网络密切相关。另一个关键的技术问题是探索与低温水性电解质兼容的合适电极材料。为了确保电池在低温条件下正常工作,开发了一种含有多组分高氯酸盐(Zn、Ca、Mg、Li)ClO4 的高熵电解质 (HEE)。量热分析表明,HEE 表现出极低的液-玻璃化转变温度 (-114 °C)。使用拉曼光谱、FTIR 和 NMR 光谱的结构表征表明,将多组分高氯酸盐引入水性电解质中会通过形成 M···(高2O)n···ClO4 (M 是 Zn2+、Ca2+、Mg2+ 或 Li+) 构型,因此即使在 -70 °C 下,HEE 也保持未冻结状态。 原位粘度测量表明,HEE 在 −70 °C 时的粘度为 13.8 mPa S。 电化学测量表明,HEE 的离子电导率在 25 °C 时为 22.6 mS cm–1,在 -70 °C 时为 2.7 mS cm–1,并且在循环 Zn||Zn 对称细胞。 本研究系统研究了 HEE 与不同电极材料的相容性,特别是氧化钒酸盐与预插入阳离子 (KVO) 和碳复合材料与碘 (CCM/I2),电化学测量结果表明 HEE 显示了电池系统的选择性。The KVO|嘿嘿|锌电池在室温下的循环稳定性较差(在 5.0 A g-1 下循环 5,000 次后仅 33 mA h g–1),而 CCM-I2|嘿嘿|锌电池在第一次循环中在 100 mA g-1 下显示出 182 mA h g-1 的容量和卓越的循环性能(在 5.0 A g-1 下循环 5,000 次后为 102 mA h g-1)。低温电化学测量表明,与二元电解质系统 (Zn, 3Ca)ClO4 相比,具有 HEE 的电池系统在 -70 °C 时表现出增强的电化学性能。这项工作揭示了电极/电解质适应性对 AZIBs 电化学性能的重要性,并为使用多组分高熵策略构建低温电解质提供了有价值的见解。
更新日期:2024-12-16
down
wechat
bug