当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Contactless Multicolor Infrared Detection
ACS Photonics ( IF 6.5 ) Pub Date : 2024-12-16 , DOI: 10.1021/acsphotonics.4c01200 Sukrith Dev, Nathan Anthony, Monica Allen, Jeffery Allen
ACS Photonics ( IF 6.5 ) Pub Date : 2024-12-16 , DOI: 10.1021/acsphotonics.4c01200 Sukrith Dev, Nathan Anthony, Monica Allen, Jeffery Allen
The next generation of infrared (IR) detectors will enable revolutionary advances in multicolor hyperspectral capabilities, which warrant the development of multicolor detectors. While many schemes of dual-color IR detection are reported in the literature, there are few detectors which can independently address three or more colors and have drawbacks such as requiring postgrowth fabrication steps and significant crosstalk between colors. Here we demonstrate a contactless photoconductive IR detection architecture that overcomes these challenges and can detect and independently address multiple IR colors on a single busline by using different microwave frequencies. Our design couples photoconductive absorbers to the near-fields of unique modes in a single high permittivity (ε ∼ 80) dielectric microwave resonator driven by a continuous wave microwave source. Absorbed light in each photoconductor generates electron hole pairs, which correspondingly add losses to the specific resonator mode and increase the microwave signal transmitted at the respective resonant frequency. Each unique dielectric resonator mode interacts with a photoconductor of different bandgap enabling independent coverage and addressability at disparate wavelengths including near-infrared using silicon, short-wave infrared using germanium, and midwave infrared using mercury cadmium telluride. This detection architecture does not require complex growth methods, band offset engineering, optimized doping, mesa etches, or contact formation, opening the door to practical multicolor light detection across the spectrum.
中文翻译:
非接触式多色红外检测
下一代红外 (IR) 探测器将使多色高光谱功能取得革命性进步,这为多色探测器的发展提供了保证。虽然文献中报道了许多双色 IR 检测方案,但很少有检测器可以独立处理三种或更多颜色,并且存在一些缺点,例如需要生长后制造步骤和颜色之间的大量串扰。在这里,我们展示了一种非接触式光电导 IR 检测架构,该架构克服了这些挑战,可以通过使用不同的微波频率来检测和独立处理单个母线上的多种 IR 颜色。我们的设计将光电导吸收体耦合到由连续波微波源驱动的单个高介电常数 (ε ∼ 80) 介电微波谐振器中的独特模式的近场。每个光电导体中吸收的光会产生电子空穴对,这相应地增加了特定谐振器模式的损耗,并增加了以相应谐振频率传输的微波信号。每种独特的介电谐振器模式都与不同带隙的光电导体相互作用,从而在不同波长下实现独立的覆盖和寻址,包括使用硅的近红外、使用锗的短波红外和使用碲化镉汞的中波红外。这种检测架构不需要复杂的生长方法、谱带偏移工程、优化的掺杂、台面蚀刻或触点形成,为整个光谱中实用的多色光检测打开了大门。
更新日期:2024-12-17
中文翻译:
非接触式多色红外检测
下一代红外 (IR) 探测器将使多色高光谱功能取得革命性进步,这为多色探测器的发展提供了保证。虽然文献中报道了许多双色 IR 检测方案,但很少有检测器可以独立处理三种或更多颜色,并且存在一些缺点,例如需要生长后制造步骤和颜色之间的大量串扰。在这里,我们展示了一种非接触式光电导 IR 检测架构,该架构克服了这些挑战,可以通过使用不同的微波频率来检测和独立处理单个母线上的多种 IR 颜色。我们的设计将光电导吸收体耦合到由连续波微波源驱动的单个高介电常数 (ε ∼ 80) 介电微波谐振器中的独特模式的近场。每个光电导体中吸收的光会产生电子空穴对,这相应地增加了特定谐振器模式的损耗,并增加了以相应谐振频率传输的微波信号。每种独特的介电谐振器模式都与不同带隙的光电导体相互作用,从而在不同波长下实现独立的覆盖和寻址,包括使用硅的近红外、使用锗的短波红外和使用碲化镉汞的中波红外。这种检测架构不需要复杂的生长方法、谱带偏移工程、优化的掺杂、台面蚀刻或触点形成,为整个光谱中实用的多色光检测打开了大门。