Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microelectrodes for Battery Materials
ACS Nano ( IF 15.8 ) Pub Date : 2024-12-17 , DOI: 10.1021/acsnano.4c12573 Yiyang Li, Min-Ho Kim, Zhangdi Xie, Jinhong Min, Yuzhang Li
ACS Nano ( IF 15.8 ) Pub Date : 2024-12-17 , DOI: 10.1021/acsnano.4c12573 Yiyang Li, Min-Ho Kim, Zhangdi Xie, Jinhong Min, Yuzhang Li
The ability to measure current and voltage is core to both fundamental study and engineering of electrochemical systems, including batteries for energy storage. Electrochemical measurements have traditionally been conducted on macroscopic electrodes on the order of 1 cm or larger. In this Perspective, we review recent developments in using microscopic electrodes (<100 μm) for the study of battery materials. Microelectrodes allow us to explore spatiotemporal regimes that are not accessible with macroscopic electrodes. Temporally, microelectrodes can generate ultrahigh current densities, enabling the distinction between solid electrolyte interphase (SEI) kinetics and metal deposition kinetics. Spatially, they confine electrochemistry to single particles, allowing us to study their intrinsic properties. We outline future opportunities for the use of microelectrodes for future studies of battery systems. We propose their use for analyzing the electrochemistry of other reactive metals and exploring the potential of combining them with in situ imaging techniques.
中文翻译:
电池材料用微电极
测量电流和电压的能力是电化学系统(包括储能电池)的基础研究和工程的核心。传统上,电化学测量是在 1 cm 或更大的宏观电极上进行的。在这个视角中,我们回顾了使用显微电极 (<100 μm) 研究电池材料的最新进展。微电极使我们能够探索宏观电极无法实现的时空状态。在时间上,微电极可以产生超高的电流密度,从而能够区分固体电解质界面 (SEI) 动力学和金属沉积动力学。在空间上,它们将电化学局限于单个粒子,使我们能够研究它们的内在特性。我们概述了使用微电极进行电池系统未来研究的未来机会。我们建议它们用于分析其他活性金属的电化学,并探索将它们与原位成像技术相结合的潜力。
更新日期:2024-12-17
中文翻译:
电池材料用微电极
测量电流和电压的能力是电化学系统(包括储能电池)的基础研究和工程的核心。传统上,电化学测量是在 1 cm 或更大的宏观电极上进行的。在这个视角中,我们回顾了使用显微电极 (<100 μm) 研究电池材料的最新进展。微电极使我们能够探索宏观电极无法实现的时空状态。在时间上,微电极可以产生超高的电流密度,从而能够区分固体电解质界面 (SEI) 动力学和金属沉积动力学。在空间上,它们将电化学局限于单个粒子,使我们能够研究它们的内在特性。我们概述了使用微电极进行电池系统未来研究的未来机会。我们建议它们用于分析其他活性金属的电化学,并探索将它们与原位成像技术相结合的潜力。