Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biomimetic Nanostructured Polyimine Aerogels with Graded Porosity, Flame Resistance, Intrinsic Superhydrophobicity, and Closed-Loop Recovery
ACS Nano ( IF 15.8 ) Pub Date : 2024-12-16 , DOI: 10.1021/acsnano.4c12853 Hongfei He, Lu Liu, Hongliang Ding, Chuanshen Wang, Ping Yu, Chao Ding, Jixin Zhu, Wei Yang, Yuan Hu, Bin Yu
ACS Nano ( IF 15.8 ) Pub Date : 2024-12-16 , DOI: 10.1021/acsnano.4c12853 Hongfei He, Lu Liu, Hongliang Ding, Chuanshen Wang, Ping Yu, Chao Ding, Jixin Zhu, Wei Yang, Yuan Hu, Bin Yu
Polymer aerogels, with their porous and lightweight features, excel in applications such as energy storage, absorption, and thermal insulation, making them a sought-after new material. However, the covalent cross-linking networks of current polymer aerogels result in unsustainable manufacturing and processing practices, persistently depleting our finite natural resources and causing significant global environmental impacts. Herein, we have constructed a high-performance dynamic covalent cross-linking aerogel network using biobased materials, with its structure and green sustainability akin to those of plants in nature. Abundant reversible cross-linking points endow the aerogel with ultrafast degradation capabilities, enabling allow for closed-loop chemical monomer recovery and reprocessing. Furthermore, utilizing the highly active reversible network, net-zero emission material reuse and reprocessing can be achieved. Additionally, the controlled dynamic aerogel network features a multilevel roughness nanostructured surface similar to lotus leaf and a biomimetic pore structure, contributing to significant anisotropy. The distinctive structure and composition endow the dynamic aerogel with high compressive strength (2.2 MPa) vertically, low thermal conductivity (0.0257 W/(m·K)) horizontally, and outstanding fire resistance (LOI is as high as 36%). Notably, the aerogel demonstrates the highest hydrophobicity among polyimine materials, with a contact angle of 154°. Furthermore, those dynamic aerogels have excellent performance in a variety of potential applications such as oil–water separation, directional transport, and phase change energy storage, and it is anticipated that these applications will greatly benefit from systematic upgrades in recyclability and reprocessing.
中文翻译:
具有分级孔隙率、阻燃性、固有超疏水性和闭环恢复性的仿生纳米结构聚亚胺气凝胶
聚合物气凝胶具有多孔和轻质特性,在储能、吸收和隔热等应用中表现出色,使其成为一种广受欢迎的新材料。然而,当前聚合物气凝胶的共价交联网络导致了不可持续的制造和加工实践,持续消耗了我们有限的自然资源,并造成了严重的全球环境影响。在此,我们使用生物基材料构建了一个高性能的动态共价交联气凝胶网络,其结构和绿色可持续性类似于自然界中的植物。丰富的可逆交联点赋予气凝胶超快降解能力,可实现闭环化学单体回收和再加工。此外,利用高活性的可逆网络,可以实现净零排放材料的再利用和再加工。此外,受控动态气凝胶网络具有类似于荷叶的多级粗糙度纳米结构表面和仿生孔结构,有助于显着的各向异性。独特的结构和成分赋予了动态气凝胶垂直高抗压强度 (2.2 MPa)、水平低导热系数 (0.0257 W/(m·K)) 和出色的耐火性(LOI 高达 36%)。值得注意的是,该气凝胶在聚亚胺材料中表现出最高的疏水性,接触角为 154°。此外,这些动态气凝胶在油水分离、定向运输和相变储能等各种潜在应用中具有优异的性能,预计这些应用将极大地受益于可回收性和再加工的系统升级。
更新日期:2024-12-17
中文翻译:
具有分级孔隙率、阻燃性、固有超疏水性和闭环恢复性的仿生纳米结构聚亚胺气凝胶
聚合物气凝胶具有多孔和轻质特性,在储能、吸收和隔热等应用中表现出色,使其成为一种广受欢迎的新材料。然而,当前聚合物气凝胶的共价交联网络导致了不可持续的制造和加工实践,持续消耗了我们有限的自然资源,并造成了严重的全球环境影响。在此,我们使用生物基材料构建了一个高性能的动态共价交联气凝胶网络,其结构和绿色可持续性类似于自然界中的植物。丰富的可逆交联点赋予气凝胶超快降解能力,可实现闭环化学单体回收和再加工。此外,利用高活性的可逆网络,可以实现净零排放材料的再利用和再加工。此外,受控动态气凝胶网络具有类似于荷叶的多级粗糙度纳米结构表面和仿生孔结构,有助于显着的各向异性。独特的结构和成分赋予了动态气凝胶垂直高抗压强度 (2.2 MPa)、水平低导热系数 (0.0257 W/(m·K)) 和出色的耐火性(LOI 高达 36%)。值得注意的是,该气凝胶在聚亚胺材料中表现出最高的疏水性,接触角为 154°。此外,这些动态气凝胶在油水分离、定向运输和相变储能等各种潜在应用中具有优异的性能,预计这些应用将极大地受益于可回收性和再加工的系统升级。