当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thiocyanate Coordination Regulates the Interlayer Ammonium Ion Storage Structure of Molybdenum Disulfide
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-16 , DOI: 10.1021/acsenergylett.4c02712 Hang Li, Ruohan Yu, Haibo Chen, Jing Hu, Jianli Zhang, Guangya Hou, Qiang Chen, Jun Lu, Yiping Tang
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-16 , DOI: 10.1021/acsenergylett.4c02712 Hang Li, Ruohan Yu, Haibo Chen, Jing Hu, Jianli Zhang, Guangya Hou, Qiang Chen, Jun Lu, Yiping Tang
Aqueous ammonium ion storage utilizes the intercalation and coordination diffusion mechanisms of NH4+ within the host material, resulting in a low-cost, high-safety energy storage device. However, the capacity of the NH4+ storage hosts, represented by layered materials, is mainly limited by the limited interlayer size and coordination sites. Here, a strategy is proposed to enhance NH4+ storage by utilizing nonmetallic ions with long-chain structures to regulate the interlayer spacing and coordination activity of MoS2. Atomic-level electron microscopy, chemical reactions, and theoretical simulations revealed that SCN– was successfully intercalated into MoS2 and coordinated with S atoms to construct an interlayer network. The intercalation of SCN– provides sufficient space and abundant hydrogen-bonding sites. This work effectively solves the dilemma of traditional layered materials in NH4+ storage and demonstrates the broad prospects of interlayer coordination engineering strategies for energy storage devices.
中文翻译:
硫氰酸盐配位调控二硫化钼的层间铵离子储存结构
水铵离子储存利用 NH4+ 在主体材料内的插层和配位扩散机制,从而产生低成本、高安全性的储能装置。然而,以分层材料为代表的 NH4+ 存储主机的容量主要受到有限的层间尺寸和协调站点的限制。本文提出了一种策略,通过利用具有长链结构的非金属离子来调节 MoS2 的层间距和配位活性,从而增强 NH4+ 的储存。原子级电子显微镜、化学反应和理论模拟表明,SCN– 成功嵌入 MoS2 并与 S 原子配位构建层间网络。SCN 的嵌入– 提供足够的空间和丰富的氢键位点。这项工作有效解决了传统层状材料在 NH4+ 存储中的困境,展示了储能器件层间协调工程策略的广阔前景。
更新日期:2024-12-17
中文翻译:
硫氰酸盐配位调控二硫化钼的层间铵离子储存结构
水铵离子储存利用 NH4+ 在主体材料内的插层和配位扩散机制,从而产生低成本、高安全性的储能装置。然而,以分层材料为代表的 NH4+ 存储主机的容量主要受到有限的层间尺寸和协调站点的限制。本文提出了一种策略,通过利用具有长链结构的非金属离子来调节 MoS2 的层间距和配位活性,从而增强 NH4+ 的储存。原子级电子显微镜、化学反应和理论模拟表明,SCN– 成功嵌入 MoS2 并与 S 原子配位构建层间网络。SCN 的嵌入– 提供足够的空间和丰富的氢键位点。这项工作有效解决了传统层状材料在 NH4+ 存储中的困境,展示了储能器件层间协调工程策略的广阔前景。