当前位置:
X-MOL 学术
›
Appl. Phys. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fault localization in a microfabricated surface ion trap using diamond nitrogen-vacancy center magnetometry
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-12-16 , DOI: 10.1063/5.0234269 Pauli Kehayias, Matthew A. Delaney, Raymond A. Haltli, Susan M. Clark, Melissa C. Revelle, Andrew M. Mounce
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-12-16 , DOI: 10.1063/5.0234269 Pauli Kehayias, Matthew A. Delaney, Raymond A. Haltli, Susan M. Clark, Melissa C. Revelle, Andrew M. Mounce
As quantum computing hardware becomes more complex with ongoing design innovations and growing capabilities, the quantum computing community needs increasingly powerful techniques for fabrication failure root-cause analysis. This is especially true for trapped-ion quantum computing. As trapped-ion quantum computing aims to scale to thousands of ions, the electrode numbers are growing to several hundred, with likely integrated photonic components also adding to the electrical and fabrication complexity, making faults even harder to locate. In this work, we used a high-resolution quantum magnetic imaging technique, based on nitrogen-vacancy centers in diamond, to investigate short-circuit faults in an ion trap chip. We imaged currents from these short-circuit faults to ground and compared them to intentionally created faults, finding that the root cause of the faults was failures in the on-chip trench capacitors. This work, where we exploited the performance advantages of a quantum magnetic sensing technique to troubleshoot a piece of quantum computing hardware, is a unique example of the evolving synergy between emerging quantum technologies to achieve capabilities that were previously inaccessible.
中文翻译:
使用金刚石氮空位中心磁力计的微加工表面离子阱中的故障定位
随着量子计算硬件的不断创新和能力的不断增长而变得更加复杂,量子计算社区需要越来越强大的技术来进行制造故障根本原因分析。对于囚禁离子量子计算尤其如此。随着囚禁离子量子计算旨在扩展到数千个离子,电极数量正在增长到数百个,可能集成的光子组件也增加了电气和制造的复杂性,使故障更难定位。在这项工作中,我们使用了基于金刚石中氮空位中心的高分辨率量子磁成像技术来研究离子阱芯片中的短路故障。我们对这些短路故障的接地电流进行了成像,并将其与故意制造的故障进行比较,发现故障的根本原因是片上沟槽电容器的故障。在这项工作中,我们利用量子磁传感技术的性能优势对量子计算硬件进行故障排除,这是新兴量子技术之间不断发展的协同作用以实现以前无法获得的能力的独特示例。
更新日期:2024-12-16
中文翻译:
使用金刚石氮空位中心磁力计的微加工表面离子阱中的故障定位
随着量子计算硬件的不断创新和能力的不断增长而变得更加复杂,量子计算社区需要越来越强大的技术来进行制造故障根本原因分析。对于囚禁离子量子计算尤其如此。随着囚禁离子量子计算旨在扩展到数千个离子,电极数量正在增长到数百个,可能集成的光子组件也增加了电气和制造的复杂性,使故障更难定位。在这项工作中,我们使用了基于金刚石中氮空位中心的高分辨率量子磁成像技术来研究离子阱芯片中的短路故障。我们对这些短路故障的接地电流进行了成像,并将其与故意制造的故障进行比较,发现故障的根本原因是片上沟槽电容器的故障。在这项工作中,我们利用量子磁传感技术的性能优势对量子计算硬件进行故障排除,这是新兴量子技术之间不断发展的协同作用以实现以前无法获得的能力的独特示例。