当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Anionic Doping in Layered Transition Metal Chalcogenides for Robust Lithium‐Sulfur Batteries
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2024-12-17 , DOI: 10.1002/anie.202420488 Chen Huang, Jing Yu, Chao Yue Zhang, Zhibiao Cui, Ren He, Linlin Yang, Bingfei Nan, Canhuang Li, Xuede Qi, Xueqiang Qi, Junshan Li, Jin Yuan Zhou, Oleg Usoltsev, Laura Simonelli, Jordi Arbiol, Yao-Jie Lei, Qing Sun, Guoxiu Wang, Andreu Cabot
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2024-12-17 , DOI: 10.1002/anie.202420488 Chen Huang, Jing Yu, Chao Yue Zhang, Zhibiao Cui, Ren He, Linlin Yang, Bingfei Nan, Canhuang Li, Xuede Qi, Xueqiang Qi, Junshan Li, Jin Yuan Zhou, Oleg Usoltsev, Laura Simonelli, Jordi Arbiol, Yao-Jie Lei, Qing Sun, Guoxiu Wang, Andreu Cabot
Lithium‐sulfur batteries (LSBs) are among the most promising next‐generation energy storage technologies. However, a slow Li‐S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic‐doped transition metal chalcogenide as an effective catalyst to accelerate the Li‐S reaction. Specifically, a tellurium‐doped, carbon‐supported bismuth selenide with Se vacancies (Te‐Bi2Se3‐x@C) is prepared and tested as a sulfur host in LSB cathodes. X‐ray absorption and in‐situ X‐ray diffraction analyses reveal that Te doping induces lattice distortions and modulates the local coordination environment and electronic structure of Bi atoms to promote the catalytic activity toward the conversion of polysulfides. Additionally, the generated Se vacancies alter the electronic structure around atomic defect sites, increase the carrier concentration, and activate unpaired cations to effectively trap polysulfides. As a result, LSBs based on Te‐Bi2Se3‐x@C/S cathodes demonstrate outstanding specific capacities of 1508 mAh·g‐1 at 0.1C, excellent rate performance with 655 mAh·g‐1 at 5C, and near‐integral cycle stability over 1000 cycles. Furthermore, under high sulfur loading of 6.4 mg·cm‐2, a cathode capacity exceeding 8 mAh·cm‐2 is sustained at 0.1C current rate, with 6.4 mAh·cm‐2 retained after 300 cycles under lean electrolyte conditions (6.8 μL·mg‐1).
中文翻译:
层状过渡金属硫系化物中的阴离子掺杂,用于稳健的锂硫电池
锂硫电池 (LSB) 是最有前途的下一代储能技术之一。然而,LSB 阴极的缓慢 Li-S 反应动力学限制了它们的能量和功率密度。为了应对这些挑战,本研究引入了一种阴离子掺杂的过渡金属硫属化物作为加速 Li-S 反应的有效催化剂。具体来说,制备了具有 Se 空位 (Te-Bi2Se3-x@C) 的碲掺杂碳负载硒化铋,并在 LSB 阴极中作为硫宿主进行了测试。X 射线吸收和原位 X 射线衍射分析表明,Te 掺杂诱导晶格畸变并调节 Bi 原子的局部配位环境和电子结构,以促进催化活性向多硫化物转化。此外,产生的 Se 空位会改变原子缺陷位点周围的电子结构,增加载流子浓度,并激活不成对的阳离子以有效捕获多硫化物。因此,基于 Te-Bi2Se3-x@C/S 阴极的 LSB 在 0.1C 时表现出 1508 mAh·g-1 的出色比容量,在 5C 时表现出 655 mAh·g-1 的出色倍率性能,以及超过 1000 次循环的近积分循环稳定性。此外,在 6.4 mg·cm-2 的高硫负载量下,在 0.1C 电流速率下维持超过 8 mAh·cm-2 的阴极容量,在贫电解质条件下 (6.8 μL·mg-1) 循环 300 次后仍保留 6.4 mAh·cm-2。
更新日期:2024-12-17
中文翻译:
层状过渡金属硫系化物中的阴离子掺杂,用于稳健的锂硫电池
锂硫电池 (LSB) 是最有前途的下一代储能技术之一。然而,LSB 阴极的缓慢 Li-S 反应动力学限制了它们的能量和功率密度。为了应对这些挑战,本研究引入了一种阴离子掺杂的过渡金属硫属化物作为加速 Li-S 反应的有效催化剂。具体来说,制备了具有 Se 空位 (Te-Bi2Se3-x@C) 的碲掺杂碳负载硒化铋,并在 LSB 阴极中作为硫宿主进行了测试。X 射线吸收和原位 X 射线衍射分析表明,Te 掺杂诱导晶格畸变并调节 Bi 原子的局部配位环境和电子结构,以促进催化活性向多硫化物转化。此外,产生的 Se 空位会改变原子缺陷位点周围的电子结构,增加载流子浓度,并激活不成对的阳离子以有效捕获多硫化物。因此,基于 Te-Bi2Se3-x@C/S 阴极的 LSB 在 0.1C 时表现出 1508 mAh·g-1 的出色比容量,在 5C 时表现出 655 mAh·g-1 的出色倍率性能,以及超过 1000 次循环的近积分循环稳定性。此外,在 6.4 mg·cm-2 的高硫负载量下,在 0.1C 电流速率下维持超过 8 mAh·cm-2 的阴极容量,在贫电解质条件下 (6.8 μL·mg-1) 循环 300 次后仍保留 6.4 mAh·cm-2。