当前位置:
X-MOL 学术
›
Combinatorica
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Anticoncentration of Random Vectors via the Strong Perfect Graph Theorem
Combinatorica ( IF 1.0 ) Pub Date : 2024-12-17 , DOI: 10.1007/s00493-024-00124-0 Tomas Juškevičius, Valentas Kurauskas
中文翻译:
通过强完美图定理对随机向量进行反集中
更新日期:2024-12-17
Combinatorica ( IF 1.0 ) Pub Date : 2024-12-17 , DOI: 10.1007/s00493-024-00124-0 Tomas Juškevičius, Valentas Kurauskas
In this paper we give anticoncentration bounds for sums of independent random vectors in finite-dimensional vector spaces. In particular, we asymptotically establish a conjecture of Leader and Radcliffe (SIAM J Discrete Math 7:90–101, 1994) and a question of Jones (SIAM J Appl Math 34:1–6, 1978). The highlight of this work is an application of the strong perfect graph theorem by Chudnovsky et al. (Ann Math 164:51–229, 2006) in the context of anticoncentration.
中文翻译:
通过强完美图定理对随机向量进行反集中
在本文中,我们给出了有限维向量空间中独立随机向量之和的反集中边界。特别是,我们渐近地建立了一个 Leader 和 Radcliffe 的猜想 (SIAM J Discrete Math 7:90–101, 1994) 和一个 Jones 的问题 (SIAM J Appl Math 34:1–6, 1978)。这项工作的亮点是将 Chudnovsky 等人 (Ann Math 164:51–229, 2006) 的强完美图定理应用于反集中的背景下。