当前位置:
X-MOL 学术
›
Electrochim. Acta
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Preparation of V4+electrolyte by nanofluid-based electrocatalytic reduction of V2O5 for vanadium redox flow batteries
Electrochimica Acta ( IF 5.5 ) Pub Date : 2024-12-16 , DOI: 10.1016/j.electacta.2024.145532 Nianben Zheng, Xuemei Qiu, Shengqian Jin, Zhangnan Xu, Mingyu Zhou, Zexin Zhou, Tian Zhou, Zhiqiang Sun
Electrochimica Acta ( IF 5.5 ) Pub Date : 2024-12-16 , DOI: 10.1016/j.electacta.2024.145532 Nianben Zheng, Xuemei Qiu, Shengqian Jin, Zhangnan Xu, Mingyu Zhou, Zexin Zhou, Tian Zhou, Zhiqiang Sun
The electrolyte employed in the vanadium redox flow battery (VRFB) is typically produced on an industrial scale through a secure and contaminant-free electrolysis process. However, the electrolysis rate is relatively sluggish, leading to elevated energy consumption. Herein, we propose a cost-effective method for electrolytic production of V(IV) electrolytes with carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) as the electrocatalyst and explore their effects on the electrolysis process. The results indicate that adding MWCNTs-COOH nanoparticles enhances the reactive sites of the electrode, thus improving the electrochemical activity of the electrolyte. The 0.1 wt% nanoparticle demonstrates the optimal catalytic performance for reducing V(V) to V(IV). Compared to the traditional electrolysis method, the proposed approach exhibits a 6.67 % increase in electrolysis rate, a 15.57 % reduction in energy consumption, and a notable relief in electrode corrosion. Furthermore, cyclic charge/discharge experiments illustrate that the prepared nanofluidic electrolyte exhibits superior performance in terms of voltage efficiency, Coulombic efficiency, energy efficiency, and discharge capacity retention. This invention offers a novel concept for vanadium electrolyte preparation, which reduces energy consumption and cost and improves the system's energy efficiency, showing great promise for practical VRFB applications.
中文翻译:
纳米流体基电催化还原 V2O5 制备 V4+电解质用于钒氧化还原液流电池
钒氧化还原液流电池 (VRFB) 中使用的电解质通常通过安全且无污染的电解过程以工业规模生产。然而,电解速率相对缓慢,导致能耗升高。在此,我们提出了一种以羧基官能化多壁碳纳米管 (MWCNTs-COOH) 为电催化剂电解生产 V(IV) 电解质的经济高效的方法,并探讨了它们对电解过程的影响。结果表明,添加 MWCNTs-COOH 纳米颗粒增强了电极的反应位点,从而提高了电解质的电化学活性。0.1 wt% 纳米颗粒表现出将 V(V) 还原为 V(IV) 的最佳催化性能。与传统的电解方法相比,所提出的方法使电解速率提高了 6.67%,能耗降低了 15.57%,电极腐蚀明显减轻。此外,循环充放电实验表明,所制备的纳米流体电解质在电压效率、库仑效率、能源效率和放电容量保持方面表现出优异的性能。本发明为钒电解质制备提供了一种新颖的概念,降低了能耗和成本,提高了系统的能源效率,在实际 VRFB 应用中显示出巨大的前景。
更新日期:2024-12-21
中文翻译:
纳米流体基电催化还原 V2O5 制备 V4+电解质用于钒氧化还原液流电池
钒氧化还原液流电池 (VRFB) 中使用的电解质通常通过安全且无污染的电解过程以工业规模生产。然而,电解速率相对缓慢,导致能耗升高。在此,我们提出了一种以羧基官能化多壁碳纳米管 (MWCNTs-COOH) 为电催化剂电解生产 V(IV) 电解质的经济高效的方法,并探讨了它们对电解过程的影响。结果表明,添加 MWCNTs-COOH 纳米颗粒增强了电极的反应位点,从而提高了电解质的电化学活性。0.1 wt% 纳米颗粒表现出将 V(V) 还原为 V(IV) 的最佳催化性能。与传统的电解方法相比,所提出的方法使电解速率提高了 6.67%,能耗降低了 15.57%,电极腐蚀明显减轻。此外,循环充放电实验表明,所制备的纳米流体电解质在电压效率、库仑效率、能源效率和放电容量保持方面表现出优异的性能。本发明为钒电解质制备提供了一种新颖的概念,降低了能耗和成本,提高了系统的能源效率,在实际 VRFB 应用中显示出巨大的前景。