当前位置:
X-MOL 学术
›
Chem. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controllable Reconstruction of Lignified Biomass with Molecular Scissors to form Carbon Framework for Highly Stable Li Metal Battery
Chemical Science ( IF 7.6 ) Pub Date : 2024-12-16 , DOI: 10.1039/d4sc07374f Qi Lu, Chenyu Yang, Yang Xu, Zhan Jiang, Da Ke, Runze Meng, Si-Jiang Hu, Yuanzhen Chen, Chaofeng Zhang, Jianping Yang, Tengfei Zhou
Chemical Science ( IF 7.6 ) Pub Date : 2024-12-16 , DOI: 10.1039/d4sc07374f Qi Lu, Chenyu Yang, Yang Xu, Zhan Jiang, Da Ke, Runze Meng, Si-Jiang Hu, Yuanzhen Chen, Chaofeng Zhang, Jianping Yang, Tengfei Zhou
Lithium metal batteries (LMBs) promise high-energy-density storage but face safety issues due to dendrite-induced lithium deposition, irreversible electrolyte consumption, and large volume changes, which hinder their practical applications. To address these issues, tuning lithium deposition by structuring a host for the lithium metal anode has been recognized as an efficient method. Herein, we report a supercritical water molecular scissor-controlled strategy to form a carbon framework derived from biomass wood. Proximate-supercritical water treatment is used to selectively cleave the β-O-4 bonds in lignin, with the extent of degradation controlled by adjusting the treatment environment's acidity. The enhanced thermal power of supercritical water molecules significantly accelerates the etching rate of lignin, increasing the porosity and permeability of the transformed carbon framework. Experimental results and multi-physics simulations show that the interconnected carbon-based pores and inner skeletal multilevel hierarchical structure facilitate rapid electron and ion transfer during battery operation and enhance electrolyte infiltration. Impressively, the as-obtained lithium metal anode exhibits long-term cycling stability of over 2000 hours at 0.5 mA cm-2 with low voltage overpotential. The water-treated pinus (WTP)-Li//LiCoO₂ full cells maintain a high capacity retention rate of 93.3% and a specific capacity of 142 mA h g-1 at 0.5 C for 100 cycles.
中文翻译:
用分子剪刀可控重构木质化生物质以形成高稳定性锂金属电池的碳框架
锂金属电池 (LMB) 有望实现高能量密度存储,但由于枝晶诱导的锂沉积、不可逆的电解液消耗和大体积变化而面临安全问题,这阻碍了其实际应用。为了解决这些问题,通过构建锂金属阳极的主体来调整锂沉积已被公认为一种有效的方法。在此,我们报道了一种超临界水分子剪刀控制策略,以形成源自生物质木材的碳框架。近临界-超临界水处理用于选择性地裂解木质素中的 β-O-4 键,通过调整处理环境的酸度来控制降解程度。超临界水分子的热能增强显着加快了木质素的蚀刻速率,增加了转化碳框架的孔隙率和渗透性。实验结果和多物理场仿真表明,互连的碳基孔和内部骨骼多级层次结构促进了电池运行过程中的快速电子和离子转移,并增强了电解质渗透。令人印象深刻的是,所获得的锂金属负极在 0.5 mA cm-2 和低压过电位下表现出超过 2000 小时的长期循环稳定性。水处理松 (WTP)-Li//LiCoO₂ 全电池在 0.5 C 下保持 100 次循环,保持率高达 93.3%,比容量为 142 mA h g-1。
更新日期:2024-12-16
中文翻译:
用分子剪刀可控重构木质化生物质以形成高稳定性锂金属电池的碳框架
锂金属电池 (LMB) 有望实现高能量密度存储,但由于枝晶诱导的锂沉积、不可逆的电解液消耗和大体积变化而面临安全问题,这阻碍了其实际应用。为了解决这些问题,通过构建锂金属阳极的主体来调整锂沉积已被公认为一种有效的方法。在此,我们报道了一种超临界水分子剪刀控制策略,以形成源自生物质木材的碳框架。近临界-超临界水处理用于选择性地裂解木质素中的 β-O-4 键,通过调整处理环境的酸度来控制降解程度。超临界水分子的热能增强显着加快了木质素的蚀刻速率,增加了转化碳框架的孔隙率和渗透性。实验结果和多物理场仿真表明,互连的碳基孔和内部骨骼多级层次结构促进了电池运行过程中的快速电子和离子转移,并增强了电解质渗透。令人印象深刻的是,所获得的锂金属负极在 0.5 mA cm-2 和低压过电位下表现出超过 2000 小时的长期循环稳定性。水处理松 (WTP)-Li//LiCoO₂ 全电池在 0.5 C 下保持 100 次循环,保持率高达 93.3%,比容量为 142 mA h g-1。