当前位置: X-MOL 学术Astron. Astrophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transient classifiers for Fink
Astronomy & Astrophysics ( IF 5.4 ) Pub Date : 2024-12-13 , DOI: 10.1051/0004-6361/202450370
B. M. O. Fraga, C. R. Bom, A. Santos, E. Russeil, M. Leoni, J. Peloton, E. E. O. Ishida, A. Möller, S. Blondin

Context. The upcoming Legacy Survey of Space and Time (LSST) at the Vera C. Rubin Observatory is expected to detect a few million transients per night, which will generate a live alert stream during the entire ten years of the survey. This stream will be distributed via community brokers whose task is to select subsets of the stream and direct them to scientific communities. Given the volume and complexity of the anticipated data, machine learning (ML) algorithms will be paramount for this task.Aims. We present the infrastructure tests and classification methods developed within the FINK broker in preparation for LSST. This work aims to provide detailed information regarding the underlying assumptions and methods behind each classifier and enable users to make informed follow-up decisions from FINK photometric classifications.Methods. Using simulated data from the Extended LSST Astronomical Time-series Classification Challenge (ELAsTiCC), we showcase the performance of binary and multi-class ML classifiers available in FINK. These include tree-based classifiers coupled with tailored feature extraction strategies as well as deep learning algorithms. Moreover, we introduce the CBPF (Centro Brasileiro de Pesquisas Físicas) Alert Transient Search (CATS), a deep learning architecture specifically designed for this task.Results. Our results show that FINK classifiers are able to handle the extra complexity that is expected from LSST data. CATS achieved ≥93% precision for all classes except ‘long’ (for which it achieved ∼83%), while our best performing binary classifier achieves ≥98% precision and ≥99% completeness when classifying the periodic class.Conclusions. ELAsTiCC was an important milestone in preparing the FINK infrastructure to deal with LSST-like data. Our results demonstrate that FINK classifiers are well prepared for the arrival of the new stream, but this work also highlights that transitioning from the current infrastructures to Rubin will require significant adaptation of the currently available tools. This work was the first step in the right direction.

中文翻译:


Fink 的瞬态分类器



上下文。即将在 Vera C. Rubin 天文台进行的遗留空间和时间巡天 (LSST) 预计将每晚检测到数百万次瞬变,这将在整个十年的调查中生成实时警报流。该流将通过社区经纪人分发,其任务是选择流的子集并将其引导至科学社区。考虑到预期数据的数量和复杂性,机器学习 (ML) 算法对于这项任务至关重要。目标。我们介绍了在 FINK 代理中开发的基础设施测试和分类方法,为 LSST 做准备。这项工作旨在提供有关每个分类器背后的基本假设和方法的详细信息,并使用户能够根据 FINK 光度分类做出明智的后续决策。方法。使用来自扩展 LSST 天文时间序列分类挑战赛 (ELAsTiCC) 的模拟数据,我们展示了 FINK 中可用的二进制和多类 ML 分类器的性能。其中包括基于树的分类器以及定制的特征提取策略以及深度学习算法。此外,我们还介绍了 CBPF (Centro Brasileiro de Pesquisas Físicas) 警报瞬态搜索 (CATS),这是一种专为此任务设计的深度学习架构。结果。我们的结果表明,FINK 分类器能够处理 LSST 数据预期的额外复杂性。CATS 在除“long”之外的所有类中都达到了 ≥93% 的准确率(它达到了 ∼83%),而我们表现最好的二元分类器在对周期类进行分类时达到了 ≥98% 的准确率和 ≥99% 的完整性。结论。ELAsTiCC 是准备 FINK 基础设施以处理类似 LSST 的数据的一个重要里程碑。 我们的结果表明,FINK 分类器已经为新流的到来做好了充分的准备,但这项工作也强调,从当前的基础设施过渡到 Rubin 将需要对当前可用的工具进行重大调整。这项工作是朝着正确方向迈出的第一步。
更新日期:2024-12-16