当前位置: X-MOL 学术Astron. Astrophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Halo mergers enhance the growth of massive black hole seeds
Astronomy & Astrophysics ( IF 5.4 ) Pub Date : 2024-12-13 , DOI: 10.1051/0004-6361/202452486
Lewis R. Prole, John A. Regan, Daniel J. Whalen, Simon C. O. Glover, Ralf S. Klessen

Context. High-redshift observations of 109 M supermassive black holes (SMBHs) at z ∼ 7 and ‘little red dots’ that may host over-massive black holes (BHs) at z > 4 suggests the existence of so-called heavy seeds (> 1000 M) in the early Universe. Recent work has suggested that the rapid assembly of halos may be the key to forming heavy seeds early enough in the Universe to match such observations, as the high rate of accretion into the halo suppresses the cooling ability of H2, allowing it to quickly accrete up to the atomic cooling limit of 107 M prior to the run-away collapse of baryonic gas within its dark matter (DM) potential, without the need for extreme radiation fields or DM streaming velocities.Aims. While the rapid assembly of halos can lead to increased halo masses upon the onset of collapse, it remains unclear if this leads to higher-mass BH seeds. As a common route for halos to grow rapidly is via halo-halo mergers, we aim to test what effects such a merger occurring during the initial gas collapse has on the formation of BH seeds.Methods. We performed simulations of BH seed formation in four distinct idealised halo collapse scenarios: an isolated 106 M minihalo, an isolated 107 M atomic halo, the direct collision of two 107 M halos, and a fly-by collision of two 107 M halos. We simulated the collapse of the gas down to scales of ∼0.0075 pc before inserting sink particles as BH seeds and captured a further 10 Myr of accretion.Results. We have shown that halo collisions create a central environment of increased density, inside which BH seeds can accrete at higher rates. For direct collisions, the gas density peaks are disrupted by the interaction, as the collisionless DM peaks pass through each other while the colliding gas is left in the centre, removing the BH from its accretion source. When the central density peaks instead experience a fly-by interaction, the BH remains embedded in the dense gas and maintains higher accretion rates throughout the simulated period compared to the isolated halo cases. The total simulated period was 70 Myr, and we followed the evolution of the BH for the final 10 Myr. The BH spends the final 6 Myr embedded in the dense, shocked region. The final mass of the BH is a factor of 2 greater than in the isolated atomic halo case, and a factor of 3 greater than the minihalo case, reaching 104 M via its 0.03 pc accretion radius. As the maximum halo mass before collapse is determined by the atomic cooling limit of a few times 107 M, the ability of halo-halo mergers to further boost the rates of accretion onto the central object may play a crucial role in growing SMBH seeds, which is needed to explain recent observations of seemingly over-massive BHs at high redshifts.

中文翻译:


光晕合并促进了大质量黑洞种子的生长



上下文。对 z ∼ 7 处 109 M⊙ 超大质量黑洞 (SMBH) 和在 z > 4 处可能包含超大质量黑洞 (BHs) 的“小红点”的高红移观测表明,早期宇宙中存在所谓的重种子(> 1000 M⊙)。最近的研究表明,光晕的快速组装可能是在宇宙中足够早地形成重种子以匹配此类观测的关键,因为进入光晕的高吸积率抑制了 H2 的冷却能力,使其能够在重子气体在其暗物质 (DM) 电位内失控坍缩之前快速吸积至 107 ⊙M 的原子冷却极限。 无需极端的辐射场或 DM 流速。目标。虽然光晕的快速组装会导致坍缩开始时光晕质量的增加,但目前尚不清楚这是否会导致质量更高的 BH 种子。由于 halos 快速生长的常见途径是通过 halo-halo 合并,我们的目标是测试在初始气体坍缩期间发生的这种合并对 BH 种子的形成有什么影响。方法。我们在四种不同的理想化晕坍缩情景中模拟了 BH 种子的形成:一个孤立的 106 M⊙ 微型光晕、一个孤立的 107 M⊙ 原子晕、两个 107 M⊙ 光晕的直接碰撞和两个 107 M⊙ 光晕的飞越碰撞。我们模拟了气体坍缩到 ∼0.0075 pc 的规模,然后插入下沉颗粒作为 BH 种子,并进一步捕获了 10 Myr 的吸积。结果。我们已经证明,光晕碰撞创造了一个密度增加的中心环境,BH 种子可以在其中以更高的速率吸积。 对于直接碰撞,气体密度峰会因相互作用而被破坏,因为无碰撞的 DM 峰会相互穿过,而碰撞的气体留在中心,从而将 BH 从其吸积源中去除。当中心密度峰经历飞越相互作用时,与孤立的光晕情况相比,BH 仍然嵌入在致密气体中,并在整个模拟期间保持更高的吸积率。总模拟周期为 70 Myr,我们跟踪了最后 10 Myr 的 BH 演变。BH 花费了最后的 6 Myr 嵌入密集、受电击的区域。BH 的最终质量比孤立原子晕情况大 2 倍,比小光晕情况大 3 倍,通过其 0.03 pc 吸积半径达到 104 M⊙。由于坍缩前的最大光晕质量是由几倍 107 M⊙ 的原子冷却极限决定的,因此光晕-光晕合并进一步提高吸积到中心物体上的速率的能力可能在 SMBH 种子的生长中起关键作用,这是解释最近在高红移下观察到的看似超大质量的 BH 所必需的。
更新日期:2024-12-16