当前位置: X-MOL 学术Astron. Astrophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analytic insight into the physics of the standing accretion shock instability
Astronomy & Astrophysics ( IF 5.4 ) Pub Date : 2024-12-16 , DOI: 10.1051/0004-6361/202452300
T. Foglizzo

Context. During the core collapse of a massive star, and immediately before its supernova explosion, there is amplification of asymmetric motions by the standing accretion shock instability (SASI). This imprints a frequency signature on the neutrino flux and the gravitational waves that carries direct information about the explosion process.Aims. The physical interpretation of this multi-messenger signature requires a detailed understanding of the instability mechanism.Methods. We carried out a perturbative analysis to characterise the properties of SASI and assess the effect of the region of neutronization above the surface of the proto-neutron star. We compared the eigenfrequencies of the most unstable modes to those obtained in an adiabatic approximation where neutrino interactions are neglected above the neutrinosphere. We solved the differential system analytically using a Wronskian method and approximated it asymptotically for a large shock radius.Results. The oscillation period of SASI is well fitted with a simple analytic function of the shock radius, the radius of maximum deceleration, and the mass of the proto-neutron star. The oscillation period is weakly dependent on the parameterised cooling function, but this latter does affects the SASI growth rate. We describe the general properties of SASI eigenmodes using an adiabatic model. In this approximation, the eigenvalue problem is formulated as a self-forced oscillator. The forcing agent is the radial advection of baroclinic vorticity perturbations and entropy perturbations produced by the shock oscillation. We reduced the differential system defining the eigenfrequencies to a single integral equation. Its analytical approximation sheds light on the radially extended character of the region of advective-acoustic coupling. The simplicity of this adiabatic formalism opens new perspectives for the investigation of the effect of stellar rotation and non-adiabatic processes on SASI.

中文翻译:


对常设吸积激波不稳定性物理学的分析见解



上下文。在大质量恒星的核心坍缩期间,以及在其超新星爆炸之前,驻扎吸积激波不稳定性 (SASI) 放大了不对称运动。这会在中微子通量和引力波上留下频率特征,引力波携带有关爆炸过程的直接信息。目标。这个多信使签名的物理解释需要对不稳定机制有详细的了解。方法。我们进行了扰动分析,以表征 SASI 的性质,并评估原中子星表面上方的中子化区域的影响。我们将最不稳定模式的特征频率与绝热近似中获得的特征频率进行了比较,其中中微子相互作用在中微子层上方被忽略。我们使用 Wronskian 方法对微分系统进行了解析求解,并针对较大的冲击半径对其进行渐近近似。结果。SASI 的振荡周期与冲击半径、最大减速半径和原中子星质量的简单解析函数非常吻合。振荡周期对参数化冷却函数的依赖性很弱,但后者确实会影响 SASI 的增长率。我们使用绝热模型描述 SASI 特征模态的一般性质。在这个近似中,特征值问题被表述为自强迫振荡器。强迫剂是激波振荡产生的斜压涡度扰动和熵扰动的径向平流。我们将定义特征频率的微分系统简化为单个积分方程。 它的解析近似揭示了平流-声学耦合区域的径向延伸特性。这种绝热形式的简单性为研究恒星旋转和非绝热过程对 SASI 的影响开辟了新的视角。
更新日期:2024-12-16