当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrodriven ATP Synthesis via Integration of a Reconstructed Thylakoid Membrane
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2024-12-16 , DOI: 10.1002/anie.202421120 Lijing Chang, Huijuan Cui, Weisong Liu, Yi-Heng P. Job Zhang, Lingling Zhang
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2024-12-16 , DOI: 10.1002/anie.202421120 Lijing Chang, Huijuan Cui, Weisong Liu, Yi-Heng P. Job Zhang, Lingling Zhang
Nature produces ATP, the energy currency, by converting solar energy (photophosphorylation) and chemical energy (substrate‐level phosphorylation and oxidative phosphorylation). Green electricity, as a significant and sustainable energy carrier, plays a crucial role in achieving a carbon‐neutral society. In this work, we established and verified a novel electrodriven phosphorylation method. Spinach thylakoid membranes (TMs), enriched with ATPases, were isolated and constructed into planar TMs (pTMs) on a proton exchange membrane (PEM), effectively imparting the traditional PEM with the biological function of ATP regeneration. Following the optimization of TMs concentration and incubation time, the biological PEM was integrated into a two‐compartment electrochemical cell, where ATP was successfully synthesized by ATPase of pTMs, triggered by the proton gradient potential generated during electrochemical water splitting. When a constant voltage of 3 V was applied to the electrochemical cells, ATP was synthesized at a rate of 3.16 μM min‐1μgChl‐1, approximately twice the rate of ΔpH‐driven ATP synthesis. This design offers substantial potential for green energy applications in in vitro biotransformation (ivBT) systems.
中文翻译:
通过整合重建的类囊体膜进行电驱动 ATP 合成
自然界通过转换太阳能(光磷酸化)和化学能(底物水平磷酸化和氧化磷酸化)来产生 ATP,即能量货币。绿色电力作为一种重要的可持续能源载体,在实现碳中和社会方面发挥着至关重要的作用。在这项工作中,我们建立并验证了一种新的电驱动磷酸化方法。在质子交换膜 (PEM) 上分离富含 ATP 酶的菠菜类囊体膜 (TMs) 并构建成平面 TMs (pTMs),有效地赋予传统 PEM ATP 再生的生物学功能。在优化 TMs 浓度和孵育时间后,将生物 PEM 整合到一个两室电化学池中,其中 ATP 由 pTMs 的 ATP 酶成功合成,由电化学水分解过程中产生的质子梯度电位触发。当向电化学电池施加 3 V 的恒定电压时,ATP 的合成速率为 3.16 μM min-1μgChl-1,大约是 ΔpH 驱动的 ATP 合成速率的两倍。这种设计为体外生物转化 (ivBT) 系统中的绿色能源应用提供了巨大的潜力。
更新日期:2024-12-16
中文翻译:
通过整合重建的类囊体膜进行电驱动 ATP 合成
自然界通过转换太阳能(光磷酸化)和化学能(底物水平磷酸化和氧化磷酸化)来产生 ATP,即能量货币。绿色电力作为一种重要的可持续能源载体,在实现碳中和社会方面发挥着至关重要的作用。在这项工作中,我们建立并验证了一种新的电驱动磷酸化方法。在质子交换膜 (PEM) 上分离富含 ATP 酶的菠菜类囊体膜 (TMs) 并构建成平面 TMs (pTMs),有效地赋予传统 PEM ATP 再生的生物学功能。在优化 TMs 浓度和孵育时间后,将生物 PEM 整合到一个两室电化学池中,其中 ATP 由 pTMs 的 ATP 酶成功合成,由电化学水分解过程中产生的质子梯度电位触发。当向电化学电池施加 3 V 的恒定电压时,ATP 的合成速率为 3.16 μM min-1μgChl-1,大约是 ΔpH 驱动的 ATP 合成速率的两倍。这种设计为体外生物转化 (ivBT) 系统中的绿色能源应用提供了巨大的潜力。