Continuum Mechanics and Thermodynamics ( IF 1.9 ) Pub Date : 2024-12-15 , DOI: 10.1007/s00161-024-01342-z Ahmed E. Abouelregal, Marin Marin, Andreas Öchsner
At the microscale and nanoscale, materials exhibit size-dependent behaviors that classical models cannot capture. This analysis introduces a size-dependent higher-order thermoelastic heat conduction model, incorporating spatial and temporal nonlocal effects in a micropolar visco-thermoelastic medium subjected to laser pulse heat flux. The two-phase delay model, featuring higher-order temporal derivatives, captures the complex interactions among mechanical, thermal, and viscous properties in materials where size effects are significant. By including phase lag, the model effectively addresses non-Fourier heat conduction in short-duration laser pulse scenarios. It accurately predicts temperature distribution, stress response, and microrotation effects in microscale and nanoscale materials. The study visually represents how factors such as micropolarity, higher-order effects, phase delay, nonlocal index, and viscosity influence the size-dependent mechanical behavior of the half-space structure. The numerical results highlight the importance of size-dependent phenomena in nanostructures, revealing deviations from classical predictions due to nonlocal interactions. Overall, the proposed spatiotemporal nonlocal homogenization model serves as a valuable tool for analyzing the complex mechanical and thermal characteristics of nanomaterials.
中文翻译:
一种改进的时空非局部热弹性理论,适用于暴露于短脉冲激光激发下的粘弹性微极介质的更高阶相位延迟
在微米级和纳米级,材料表现出经典模型无法捕获的尺寸依赖性行为。该分析引入了一个尺寸依赖性的高阶热弹性热传导模型,该模型在受到激光脉冲热通量作用的微极粘热弹性介质中结合了空间和时间非局部效应。两相延迟模型具有高阶时间导数,可捕获尺寸效应显著的材料中机械、热和粘性属性之间的复杂相互作用。通过包含相位滞后,该模型有效地解决了短时激光脉冲场景中的非傅里叶热传导问题。它准确预测了微米级和纳米级材料中的温度分布、应力响应和微旋转效应。该研究直观地展示了微极性、高阶效应、相位延迟、非局部指数和粘度等因素如何影响半空间结构的尺寸相关力学行为。数值结果强调了尺寸依赖性现象在纳米结构中的重要性,揭示了由于非局部相互作用而与经典预测的偏差。总体而言,所提出的时空非局部均质化模型是分析纳米材料复杂机械和热特性的宝贵工具。