Nature Communications ( IF 14.7 ) Pub Date : 2024-12-16 , DOI: 10.1038/s41467-024-54853-3 Ebbe Kyhl Gøtske, Gorm Bruun Andresen, Fabian Neumann, Marta Victoria
As energy systems transform to rely on renewable energy and electrification to mitigate climate change, they encounter stronger year-to-year variability in energy supply and demand. Yet, most infrastructure planning relies on a single weather year, risking a potential lack of robustness. In this paper, we optimize capacity layouts for a European energy system under net-zero CO2 emissions for 62 different weather years. Subsequently, we fix the layouts and optimize their operation in every other weather year to assess resource adequacy and CO2 emissions. Our analysis shows a variation of ± 10% in total system costs across weather years. Layouts designed for years with compound weather events prove more robust, achieving resource adequacy of 99.9% and net-negative CO2 emissions of −0.5% per year relative to 1990 levels. CO2-emitting backup generation regulated by a CO2 tax offers a cost-effective measure to enhance robustness. It increases emissions only marginally, keeping average emissions below 1% of 1990 levels over all layouts. Our findings underscore the need for policymakers and energy stakeholders to account for interannual weather variability in future infrastructure planning.
中文翻译:
设计一个能够抵御 60 年历史天气数据的行业耦合型欧洲能源系统
随着能源系统转型为依赖可再生能源和电气化来缓解气候变化,能源供需的年际变化越来越大。然而,大多数基础设施规划都依赖于单一的天气年,因此存在可能缺乏稳健性的风险。在本文中,我们优化了 62 个不同天气年在CO2 净零排放下的欧洲能源系统的容量布局。随后,我们每隔一个天气年修复布局并优化其运营,以评估资源充足性和二氧化碳排放量。我们的分析显示,不同天气年份的总系统成本变化± 10%。事实证明,为复合天气事件设计的布局更加稳健,与 1990 年的水平相比,实现了 99.9% 的资源充足率和每年 -0.5% 的CO2 净负排放。受 CO2 税监管的排放 CO2 的备用发电提供了一种经济高效的措施来增强稳健性。它仅略微增加了排放量,使所有布局的平均排放量保持在 1990 年水平的 1% 以下。我们的研究结果强调,政策制定者和能源利益相关者需要在未来的基础设施规划中考虑年际天气变化。