当前位置:
X-MOL 学术
›
J. Comput. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tuning Electronic Relaxation of Nanorings Through Their Interlocking
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2024-12-16 , DOI: 10.1002/jcc.27533 Laura Alfonso‐Hernandez, Victor M. Freixas, Tammie Gibson, Sergei Tretiak, Sebastian Fernandez‐Alberti
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2024-12-16 , DOI: 10.1002/jcc.27533 Laura Alfonso‐Hernandez, Victor M. Freixas, Tammie Gibson, Sergei Tretiak, Sebastian Fernandez‐Alberti
Electronic and vibrational relaxation processes can be optimized and tuned by introducing alternative pathways that channel excess energy more efficiently. An ensemble of interacting molecular systems can help overcome the bottlenecks caused by large energy gaps between intermediate excited states involved in the relaxation process. By employing this strategy, catenanes composed of mechanically interlocked carbon nanostructures show great promise as new materials for achieving higher efficiencies in electronic devices. Herein, we perform nonadiabatic excited state molecular dynamics on different all‐benzene catenanes. We observe that catenanes experience faster relaxations than individual units. Coupled catenanes present overlapping energy manifolds that include several electronic excited states spatially localized on the different moieties, increasing the density of states that ultimately improve the efficiency in the energy relaxation. This result suggests the use of catenanes as a viable strategy for tuning the internal conversion rates in a quest for their utilization for new optoelectronic applications.
中文翻译:
通过互锁调整纳米环的电子弛豫
电子和振动弛豫过程可以通过引入更有效地引导多余能量的替代途径来优化和调整。一组相互作用的分子系统可以帮助克服弛豫过程中涉及的中间激发态之间的巨大能隙引起的瓶颈。通过采用这种策略,由机械互锁碳纳米结构组成的链烷作为新材料显示出巨大的前景,可以在电子设备中实现更高的效率。在此,我们对不同的全苯链烷进行非绝热激发态分子动力学。我们观察到 catenanes 比单个单位经历更快的松弛。耦合的链状体呈现重叠的能量流形,其中包括几个空间定位在不同部分上的电子激发态,增加了态的密度,最终提高了能量弛豫的效率。这一结果表明,使用 catenanes 作为调整内部转化率的可行策略,以寻求将其用于新的光电应用。
更新日期:2024-12-16
中文翻译:
通过互锁调整纳米环的电子弛豫
电子和振动弛豫过程可以通过引入更有效地引导多余能量的替代途径来优化和调整。一组相互作用的分子系统可以帮助克服弛豫过程中涉及的中间激发态之间的巨大能隙引起的瓶颈。通过采用这种策略,由机械互锁碳纳米结构组成的链烷作为新材料显示出巨大的前景,可以在电子设备中实现更高的效率。在此,我们对不同的全苯链烷进行非绝热激发态分子动力学。我们观察到 catenanes 比单个单位经历更快的松弛。耦合的链状体呈现重叠的能量流形,其中包括几个空间定位在不同部分上的电子激发态,增加了态的密度,最终提高了能量弛豫的效率。这一结果表明,使用 catenanes 作为调整内部转化率的可行策略,以寻求将其用于新的光电应用。