当前位置:
X-MOL 学术
›
Sep. Purif. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Selective separation Li+/Co2+ via FCDI system with UiO-66-NH2 incorporated polyamide sulfonamide composite membrane and acid resistance evaluation
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-12-15 , DOI: 10.1016/j.seppur.2024.131107 Lin Chen, Ruichao Zhu, Han Gao, Jin Wu, Zhiwei Yin, Chuqing Cao
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-12-15 , DOI: 10.1016/j.seppur.2024.131107 Lin Chen, Ruichao Zhu, Han Gao, Jin Wu, Zhiwei Yin, Chuqing Cao
The recycling of lithium-ion batteries (LIBs) presents significant challenges due to the absence of robust acid-resistant membranes capable of selective ion separation under harsh acidic conditions, commonly encountered in hydrometallurgical processes. This study developed a novel PSA-BTSC (polysulfonamide with 1,3,5-benzenetrisulfonyl chloride) composite membrane integrated with UiO-66-NH2 nanoparticles, aiming to enhance both acid resistance and ion separation performance. Experimental results demonstrated that the PSA-BTSC membrane achieved a Li+/Co2+ separation factor of 28.02 and retained 85.8 % permeability for Li+ while maintaining 91.1 % rejection for Co2+ after 30 days of immersion in 1 M HCl, showcasing superior acid resistance compared to conventional PA-TMC (polyamide with 1,3,5-benzenetricarbonyl trichloride) membranes, whose Co2+ rejection dropped drastically to 19.4 %. Surface charge analysis and pore size distribution indicated that PA-TMC membranes suffered partial hydrolysis and pore enlargement, resulting in a reduction of separation efficiency. In contrast, the sulfonyl groups in PSA-BTSC membranes conferred enhanced stability against acid-induced degradation. Additionally, density functional theory (DFT) simulations highlighted the higher activation energy barrier (2.63 eV) for sulfonamide bond hydrolysis compared to amide bonds (1.57 eV), emphasizing the superior stability of the PSA structure. These findings highlighted the superior stability and acid resistance of PSA-BTSC membranes, positioning them as promising materials for applications requiring high stability in acidic environments, such as the processing of lithium battery leachates.
中文翻译:
通过 FCDI 系统选择性分离 Li+/Co2+,其中 UiO-66-NH2 掺入聚酰胺磺酰胺复合膜和耐酸性评估
锂离子电池 (LIB) 的回收带来了重大挑战,因为缺乏能够在湿法冶金过程中常见的恶劣酸性条件下进行选择性离子分离的坚固耐酸膜。本研究开发了一种新型 PSA-BTSC(具有 1,3,5-苯三磺酰氯的聚磺酰胺)复合膜与 UiO-66-NH 2 纳米颗粒集成,旨在增强耐酸性和离子分离性能。实验结果表明,PSA-BTSC 膜在 1 M HCl 中浸泡 30 天 2+ 后,实现了 28.02 的 Li+/Co 2+ 分离因子,保留了 85.8% 的 Li + 渗透率,同时保持了 91.1% 的 Co 去除率,与传统的 PA-TMC(含 1,3,5-苯三羰基三氯化物的聚酰胺)膜相比,表现出卓越的耐酸性。 2+ 拒绝率急剧下降至 19.4%。表面电荷分析和孔径分布表明,PA-TMC 膜发生部分水解和孔径扩大,导致分离效率降低。相比之下,PSA-BTSC 膜中的磺酰基具有更强的抗酸诱导降解的稳定性。此外,密度泛函理论 (DFT) 模拟强调了与酰胺键 (1.57 eV) 相比,磺酰胺键水解的活化能势垒 (2.63 eV) 更高,强调了 PSA 结构的卓越稳定性。这些发现突出了 PSA-BTSC 膜的卓越稳定性和耐酸性,使其成为在酸性环境中需要高稳定性的应用(例如锂电池渗滤液的加工)的有前途的材料。
更新日期:2024-12-20
中文翻译:
通过 FCDI 系统选择性分离 Li+/Co2+,其中 UiO-66-NH2 掺入聚酰胺磺酰胺复合膜和耐酸性评估
锂离子电池 (LIB) 的回收带来了重大挑战,因为缺乏能够在湿法冶金过程中常见的恶劣酸性条件下进行选择性离子分离的坚固耐酸膜。本研究开发了一种新型 PSA-BTSC(具有 1,3,5-苯三磺酰氯的聚磺酰胺)复合膜与 UiO-66-NH 2 纳米颗粒集成,旨在增强耐酸性和离子分离性能。实验结果表明,PSA-BTSC 膜在 1 M HCl 中浸泡 30 天 2+ 后,实现了 28.02 的 Li+/Co 2+ 分离因子,保留了 85.8% 的 Li + 渗透率,同时保持了 91.1% 的 Co 去除率,与传统的 PA-TMC(含 1,3,5-苯三羰基三氯化物的聚酰胺)膜相比,表现出卓越的耐酸性。 2+ 拒绝率急剧下降至 19.4%。表面电荷分析和孔径分布表明,PA-TMC 膜发生部分水解和孔径扩大,导致分离效率降低。相比之下,PSA-BTSC 膜中的磺酰基具有更强的抗酸诱导降解的稳定性。此外,密度泛函理论 (DFT) 模拟强调了与酰胺键 (1.57 eV) 相比,磺酰胺键水解的活化能势垒 (2.63 eV) 更高,强调了 PSA 结构的卓越稳定性。这些发现突出了 PSA-BTSC 膜的卓越稳定性和耐酸性,使其成为在酸性环境中需要高稳定性的应用(例如锂电池渗滤液的加工)的有前途的材料。