当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spontaneous supergravity field drives liquid-phase microelements to enhance CO2 capture through self revolution coupling
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-12-15 , DOI: 10.1016/j.seppur.2024.131058
Xiaoxu Duan, Caijiao Cong, Liwang Wang, Yongcong Liu, Zhisheng Zhao, Jiwei Wu, Liang Ma

In the pursuit of global carbon neutrality, the emissions of carbon-containing flue gas resulting from methanol production pose a significant challenge to the chemical industry’s efforts to achieve this goal. It is imperative to develop cost-effective and low-carbon carbon capture technologies. This study introduces the hydro-jet oscillating purifier (HOP) that utilizes spontaneous supergravity to promote the self-revolution coupling motion of liquid-phase microelements, thereby enhancing mass transfer efficiency. The research further investigates the effect of the HOP’s overflow pipe model on the mass transfer process and determines optimal parameters for carbon capture. The gas phase generates a vortex supergravity field that disrupts the liquid column, leading to the formation of uniformly dispersed liquid-phase microelements that engage in self-revolution coupling motion. The presence of these liquid-phase microelements increases the turbulent kinetic energy within the vortex supergravity field, which accelerates the movement of surface molecules in the liquid phase. Mass transfer efficiency and carbon capture efficiency can be improved by increasing the mass transfer area, increasing the absorption capacity, and minimizing the liquid film resistance. A mass transfer coefficient model was established for various overflow pipe lengths, resulting in a maximum mass transfer coefficient of 36 kmol·kPa−1·m−3·s−1 and a carbon capture efficiency of 83%. This article presents a high-efficiency technology for flue gas carbon capture, which is expected to facilitate the low-carbon transition in the chemical industry and support the timely achievement of carbon neutrality goals.

中文翻译:


自发超重力场驱动液相微量元素,通过自转耦合增强 CO2 捕获



在追求全球碳中和的过程中,甲醇生产产生的含碳烟气排放对化工行业实现这一目标的努力构成了重大挑战。开发具有成本效益和低碳的碳捕获技术势在必行。本研究介绍了水射流振荡净化器 (HOP),它利用自发超重力来促进液相微量元素的自转耦合运动,从而提高传质效率。该研究进一步调查了 HOP 的溢流管模型对传质过程的影响,并确定了碳捕获的最佳参数。气相产生涡旋超重力场,破坏液柱,导致形成均匀分散的液相微量元素,这些微元素进行自转耦合运动。这些液相微量元素的存在增加了涡旋超重力场内的湍流动能,从而加速了液相中表面分子的运动。通过增加传质面积、增加吸收容量和最小化液膜阻力,可以提高传质效率和碳捕获效率。针对不同溢流管长度建立了传质系数模型,得出最大传质系数为 36 kmol·kPa−1·m−3·s−1,碳捕获效率为 83%。本文介绍了一种高效的烟气碳捕集技术,有望促进化工行业的低碳转型,并支持及时实现碳中和目标。
更新日期:2024-12-15
down
wechat
bug