当前位置:
X-MOL 学术
›
Plant Physiol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Kiwifruit spatiotemporal multiomics networks uncover key tissue-specific regulatory processes throughout the life cycle
Plant Physiology ( IF 6.5 ) Pub Date : 2024-12-14 , DOI: 10.1093/plphys/kiae567 Zhebin Zeng, Yawei Li, Man Zhu, Xiaoyao Wang, Yan Wang, Ang Li, Xiaoya Chen, Qianrong Han, Niels J Nieuwenhuizen, Charles Ampomah-Dwamena, Xiuxin Deng, Yunjiang Cheng, Qiang Xu, Cui Xiao, Fan Zhang, Ross G Atkinson, Yunliu Zeng
Plant Physiology ( IF 6.5 ) Pub Date : 2024-12-14 , DOI: 10.1093/plphys/kiae567 Zhebin Zeng, Yawei Li, Man Zhu, Xiaoyao Wang, Yan Wang, Ang Li, Xiaoya Chen, Qianrong Han, Niels J Nieuwenhuizen, Charles Ampomah-Dwamena, Xiuxin Deng, Yunjiang Cheng, Qiang Xu, Cui Xiao, Fan Zhang, Ross G Atkinson, Yunliu Zeng
Kiwifruit (Actinidia chinensis), a recently commercialized horticultural crop, is rich in various nutrient compounds. However, the regulatory networks controlling the dynamic changes in key metabolites among different tissues remain largely unknown. Here, high-resolution spatiotemporal datasets obtained by ultraperformance liquid chromatography-tandem mass spectrometry methodology and RNA-seq were employed to investigate the dynamic changes in the metabolic and transcriptional landscape of major kiwifruit tissues across different developmental stages, including from fruit skin, outer pericarp, inner pericarp, and fruit core. Kiwifruit spatiotemporal regulatory networks (KSRN) were constructed by integrating the 1,243 identified metabolites and co-expressed genes into 10 different clusters and 11 modules based on their biological functions. These networks allowed the generation of a global map for the major metabolic and transcriptional changes occurring throughout the life cycle of different kiwifruit tissues and discovery of the underlying regulatory networks. KSRN predictions confirmed previously established regulatory networks, including the spatiotemporal accumulation of anthocyanin and ascorbic acid (AsA). More importantly, the networks led to the functional characterization of three transcription factors: an A. chinensis ethylene response factor 1, which negatively controls sugar accumulation and ethylene production by perceiving the ripening signal, a basic-leucine zipper 60 (AcbZIP60) transcription factor, which is involved in the biosynthesis of AsA as part of the L-galactose pathway, and a transcription factor related to apetala 2.4 (RAP2.4), which directly activates the expression of the kiwi fruit aroma terpene synthase gene AcTPS1b. Our findings provide insights into spatiotemporal changes in kiwifruit metabolism and generate a valuable resource for the study of metabolic regulatory processes in kiwifruit as well as other fruits.
中文翻译:
Kiwifruit 时空多组学网络揭示了整个生命周期中关键的组织特异性调控过程
猕猴桃 (Actinidia chinensis) 是一种最近商业化的园艺作物,富含各种营养化合物。然而,控制不同组织之间关键代谢物动态变化的调控网络在很大程度上仍然未知。在这里,采用超高效液相色谱-串联质谱法和 RNA-seq 获得的高分辨率时空数据集来研究主要猕猴桃组织在不同发育阶段代谢和转录景观的动态变化,包括果皮、外果皮、内果皮和果核。通过将 1,243 个已鉴定的代谢物和共表达基因根据其生物学功能整合到 10 个不同的簇和 11 个模块中,构建了猕猴桃时空调控网络 (KSRN)。这些网络允许为不同猕猴桃组织在整个生命周期中发生的主要代谢和转录变化生成全球图谱,并发现潜在的调控网络。KSRN 预测证实了先前建立的调控网络,包括花青素和抗坏血酸 (AsA) 的时空积累。更重要的是,这些网络导致了三种转录因子的功能表征:一种 A. chinensis 乙烯反应因子 1,它通过感知成熟信号来负向控制糖的积累和乙烯的产生,一种碱性亮氨酸拉链 60 (AcbZIP60) 转录因子,作为 L-半乳糖途径的一部分参与 AsA 的生物合成,以及与 Apetala 2.4 相关的转录因子 (RAP2.4), 直接激活猕猴桃香气萜烯合酶基因 AcTPS1b 的表达。 我们的研究结果为猕猴桃代谢的时空变化提供了见解,并为研究猕猴桃和其他水果的代谢调节过程提供了宝贵的资源。
更新日期:2024-12-14
中文翻译:
Kiwifruit 时空多组学网络揭示了整个生命周期中关键的组织特异性调控过程
猕猴桃 (Actinidia chinensis) 是一种最近商业化的园艺作物,富含各种营养化合物。然而,控制不同组织之间关键代谢物动态变化的调控网络在很大程度上仍然未知。在这里,采用超高效液相色谱-串联质谱法和 RNA-seq 获得的高分辨率时空数据集来研究主要猕猴桃组织在不同发育阶段代谢和转录景观的动态变化,包括果皮、外果皮、内果皮和果核。通过将 1,243 个已鉴定的代谢物和共表达基因根据其生物学功能整合到 10 个不同的簇和 11 个模块中,构建了猕猴桃时空调控网络 (KSRN)。这些网络允许为不同猕猴桃组织在整个生命周期中发生的主要代谢和转录变化生成全球图谱,并发现潜在的调控网络。KSRN 预测证实了先前建立的调控网络,包括花青素和抗坏血酸 (AsA) 的时空积累。更重要的是,这些网络导致了三种转录因子的功能表征:一种 A. chinensis 乙烯反应因子 1,它通过感知成熟信号来负向控制糖的积累和乙烯的产生,一种碱性亮氨酸拉链 60 (AcbZIP60) 转录因子,作为 L-半乳糖途径的一部分参与 AsA 的生物合成,以及与 Apetala 2.4 相关的转录因子 (RAP2.4), 直接激活猕猴桃香气萜烯合酶基因 AcTPS1b 的表达。 我们的研究结果为猕猴桃代谢的时空变化提供了见解,并为研究猕猴桃和其他水果的代谢调节过程提供了宝贵的资源。