Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-12-14 , DOI: 10.1007/s10878-024-01245-4 Canan Çiftçi, Aysun Aytaç
A subset \( S\subseteq V(G) \), where V(G) is the vertex set of a graph G, is a disjunctive total dominating set of G if each vertex has a neighbour in S or has at least two vertices in S at distance two from it. The minimum cardinality of such a set is the disjunctive total domination number. There are some graph modifications on the edge or vertex of a graph, one of which is subdividing an edge. The disjunctive total domination subdivision number of G is the minimum number of edges which must be subdivided (each edge in G can be subdivided exactly once) to increase the disjunctive total domination number. Firstly, we prove that the disjunctive total domination subdivision problem is NP-complete in bipartite graphs. We next establish some bounds on disjunctive total domination subdivision.
中文翻译:
析取总支配细分的 Np 完备性和边界
如果每个顶点在 S 中有一个邻居,或者在 S 中至少有两个顶点,距离它 2,则子集 \( S\subseteq V(G) \) 是图 G 的顶点集。这种集合的最小基数是析取的总支配数。在图形的边缘或顶点上有一些图形修改,其中之一就是细分边缘。G 的析取总支配数是必须细分的最小边数(G 中的每条边可以精确地细分一次)以增加析取总支配数。首先,我们证明析取总支配细分问题在二分图中是 NP 完备的。接下来,我们建立了一些析取总支配细分的界限。