当前位置:
X-MOL 学术
›
Appl. Math. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Wave fronts for a class of delayed Fisher–KPP equations
Applied Mathematics Letters ( IF 2.9 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.aml.2024.109406 Jinrui Zhang, Haijun Hu, Chuangxia Huang
Applied Mathematics Letters ( IF 2.9 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.aml.2024.109406 Jinrui Zhang, Haijun Hu, Chuangxia Huang
In this paper, we consider a class of Fisher–KPP equations with delays appearing in both diffusion and reaction terms. By employing some differential inequality analyses, we prove that the delayed Fisher–KPP equation possesses a pair of quasi-upper and quasi-lower solutions which have absolutely continuous derivatives. Based on this, we apply the monotone iteration method and the Perron’s theorem to establish a sufficient criterion ensuring the existence of wave fronts. Our proof corrects the previous related research.
中文翻译:
一类延迟 Fisher-KPP 方程的波前
在本文中,我们考虑了一类延迟在扩散和反应项中都出现的 Fisher-KPP 方程。通过采用一些差分不等式分析,我们证明了延迟 Fisher-KPP 方程具有一对具有绝对连续导数的准上解和准下解。基于此,我们应用单调迭代法和 Perron 定理建立了一个充分的准则来保证波前的存在。我们的证明纠正了之前的相关研究。
更新日期:2024-11-29
中文翻译:
一类延迟 Fisher-KPP 方程的波前
在本文中,我们考虑了一类延迟在扩散和反应项中都出现的 Fisher-KPP 方程。通过采用一些差分不等式分析,我们证明了延迟 Fisher-KPP 方程具有一对具有绝对连续导数的准上解和准下解。基于此,我们应用单调迭代法和 Perron 定理建立了一个充分的准则来保证波前的存在。我们的证明纠正了之前的相关研究。