当前位置:
X-MOL 学术
›
Acta Astronaut.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Motion cueing algorithms for aircraft maneuvering under variable g-loads
Acta Astronautica ( IF 3.1 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.actaastro.2024.11.023 Vladimir Alexandrov, Margarita Belousova, Stepan Lemak, Viktor Chertopolokhov
Acta Astronautica ( IF 3.1 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.actaastro.2024.11.023 Vladimir Alexandrov, Margarita Belousova, Stepan Lemak, Viktor Chertopolokhov
Pilots and astronauts are exposed to extreme conditions during flight, which can cause various undesirable effects, such as loss of consciousness or spatial disorientation. Therefore, to ensure the safety of future flights, it is necessary to use simulators on the ground to train the crew to work in difficult conditions. This paper presents a comprehensive framework for motion cueing algorithms in high-fidelity flight simulation, addressing the complex challenge of replicating overload sensations experienced in aerospace and high — maneuverability aircraft operations. We develop a unified approach encompassing two key systems: centrifuge-based simulators with gimbal-mounted cabins and multi-degree-of-freedom robotic manipulators. The proposed methodology consists of two primary phases: motion simulation and platform repositioning. We introduce algorithms for both overload magnitude and direction simulation, with particular emphasis on non-stationary flight conditions. A novel sliding mode control strategy is presented, accounting for system uncertainties and human vestibular thresholds. The challenge of platform repositioning is addressed through a time-optimal solution for smooth stopping, ensuring seamless transitions between simulation phases. Numerical simulations and experimental results demonstrate the viability of this comprehensive approach, highlighting its potential for enhancing flight simulation fidelity across various scenarios. This research contributes to the advancement of flight simulation technology, with potential applications in pilot training, aircraft design, and space mission preparation.
中文翻译:
用于飞机在可变 g 负载下机动的运动提示算法
飞行员和宇航员在飞行过程中会暴露在极端条件下,这可能会导致各种不良影响,例如意识丧失或空间定向障碍。因此,为了确保未来飞行的安全,有必要在地面上使用模拟器来训练机组人员在困难条件下工作。本文为高保真飞行模拟中的运动提示算法提供了一个全面的框架,解决了复制航空航天和高机动性飞机运行中经历的过载感觉的复杂挑战。我们开发了一种统一的方法,包括两个关键系统:带有万向节安装舱的基于离心机的模拟器和多自由度机器人操纵器。所提出的方法包括两个主要阶段:运动模拟和平台重新定位。我们介绍了用于过载幅度和方向仿真的算法,特别强调非平稳飞行条件。提出了一种新的滑模控制策略,考虑了系统不确定性和人类前庭阈值。通过时间最优的平稳停止解决方案来解决平台重新定位的挑战,确保仿真阶段之间的无缝过渡。数值仿真和实验结果表明了这种综合方法的可行性,凸显了其在各种场景中提高飞行仿真保真度的潜力。这项研究有助于飞行模拟技术的进步,在飞行员培训、飞机设计和太空任务准备方面具有潜在应用。
更新日期:2024-11-20
中文翻译:
用于飞机在可变 g 负载下机动的运动提示算法
飞行员和宇航员在飞行过程中会暴露在极端条件下,这可能会导致各种不良影响,例如意识丧失或空间定向障碍。因此,为了确保未来飞行的安全,有必要在地面上使用模拟器来训练机组人员在困难条件下工作。本文为高保真飞行模拟中的运动提示算法提供了一个全面的框架,解决了复制航空航天和高机动性飞机运行中经历的过载感觉的复杂挑战。我们开发了一种统一的方法,包括两个关键系统:带有万向节安装舱的基于离心机的模拟器和多自由度机器人操纵器。所提出的方法包括两个主要阶段:运动模拟和平台重新定位。我们介绍了用于过载幅度和方向仿真的算法,特别强调非平稳飞行条件。提出了一种新的滑模控制策略,考虑了系统不确定性和人类前庭阈值。通过时间最优的平稳停止解决方案来解决平台重新定位的挑战,确保仿真阶段之间的无缝过渡。数值仿真和实验结果表明了这种综合方法的可行性,凸显了其在各种场景中提高飞行仿真保真度的潜力。这项研究有助于飞行模拟技术的进步,在飞行员培训、飞机设计和太空任务准备方面具有潜在应用。