当前位置:
X-MOL 学术
›
J. Transp. Geogr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Investigating scheduling of minibus taxis in South Africa's eventual electric paratransit
Journal of Transport Geography ( IF 5.7 ) Pub Date : 2024-12-14 , DOI: 10.1016/j.jtrangeo.2024.104093 J. Wust, J. Bekker, M.J. Booysen
Journal of Transport Geography ( IF 5.7 ) Pub Date : 2024-12-14 , DOI: 10.1016/j.jtrangeo.2024.104093 J. Wust, J. Bekker, M.J. Booysen
The predominant mode of public transport in South Africa originates from the informal sector, specifically “paratransit”. Vehicles carry up to 23 passengers and are still propelled by internal combustion engines. We investigate the feasibility of using electric vehicles without negating the loss of opportunities by drivers and owners. We propose that scheduling of the electric vehicles is one important cornerstone towards electrification. We developed a fast-executing heuristic scheduling algorithm that allows for multiple vehicle depots in the transport network; simultaneous electric and internal combustion engine vehicle deployment; determining the number of charging stations; partial charging; and scheduled charging with intermittent electricity supply. The scheduling algorithm achieves the minimum number of vehicles to execute the passenger demand in shorter total distances, outperforming current approaches. The algorithm demonstrated multi-objective optimisation by minimising the vehicles, the number of charging stations, and the average trip delays of a schedule.
中文翻译:
调查南非最终电动辅助公交中小巴出租车的调度
南非的主要公共交通方式来自非正规部门,特别是“辅助公交”。车辆最多可搭载 23 名乘客,并且仍然由内燃机驱动。我们调查了使用电动汽车的可行性,同时又不否定驾驶员和车主失去的机会。我们提出,电动汽车的调度是电气化的重要基石之一。我们开发了一种快速执行的启发式调度算法,允许在运输网络中使用多个车辆停车场;同时部署电动和内燃机汽车;确定充电站的数量;部分充电;以及间歇性供电的定时充电。调度算法实现了在更短的总距离内执行乘客需求的最少车辆数量,优于当前的方法。该算法通过最小化车辆、充电站数量和时间表的平均行程延误来展示多目标优化。
更新日期:2024-12-14
中文翻译:
调查南非最终电动辅助公交中小巴出租车的调度
南非的主要公共交通方式来自非正规部门,特别是“辅助公交”。车辆最多可搭载 23 名乘客,并且仍然由内燃机驱动。我们调查了使用电动汽车的可行性,同时又不否定驾驶员和车主失去的机会。我们提出,电动汽车的调度是电气化的重要基石之一。我们开发了一种快速执行的启发式调度算法,允许在运输网络中使用多个车辆停车场;同时部署电动和内燃机汽车;确定充电站的数量;部分充电;以及间歇性供电的定时充电。调度算法实现了在更短的总距离内执行乘客需求的最少车辆数量,优于当前的方法。该算法通过最小化车辆、充电站数量和时间表的平均行程延误来展示多目标优化。