当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Coupling CO2 Capture Process with Electrochemically Enhanced Membrane Distillation System for Lithium-Ion Battery Recovery: Reagent-Saving and Environmental Footprint Reducing
Water Research ( IF 11.4 ) Pub Date : 2024-12-15 , DOI: 10.1016/j.watres.2024.122976 Longjie Jiang, Lin Chen, Chuqing Cao, Kang Chen, Chuhang Ji, Yi Zhang, Fangqun Gan
Water Research ( IF 11.4 ) Pub Date : 2024-12-15 , DOI: 10.1016/j.watres.2024.122976 Longjie Jiang, Lin Chen, Chuqing Cao, Kang Chen, Chuhang Ji, Yi Zhang, Fangqun Gan
The evolution of energy structure and the push for carbon neutrality have triggered an urgent call for lithium-ion batteries (LIBs). However, reclaiming end-of-life LIBs with high purity, high efficiency, and low environmental impact, particularly by eliminating chemical reagent usage and promoting a closed-loop carbon footprint, is challenging. Herein, we proposed a strategy that couples the carbon capture (CC) process with an electrochemically enhanced membrane distillation system (ECMD). The artificial LiCoO2 leachate was treated under the Li+/Co2+ separating mode, and the separation factor exceeded 14000, forming CoO(OH) precipitates and Li-enriched concentrates. Subsequently, the Li-enriched concentrates were treated in Li+ recovering mode, and battery-grade Li2CO3 was harvested with a purity of over 99.80 wt.%. The calculated production yield of Li2CO3 was up to 234.19 g·kW-1·h-1, with a CC efficiency of 31.89%. The membrane fouling and membrane failure analysis further confirmed the robustness of this process. Finally, the mass transfer and conversion processes were described by coupling the Antoine equation, Faraday's law, and two-film theory. On this basis, a dynamic equilibrium model was established, which revealed the feasibility of the long-term zero-liquid-discharge treatment. This research provides an innovative pathway for LIBs recycling, and highlights the potential of the proposed mathematic model for designing novel membrane processes with smaller environmental footprints.
中文翻译:
将 CO2 捕获工艺与电化学增强膜蒸馏系统耦合用于锂离子电池回收:节省试剂并减少环境足迹
能源结构的演变和碳中和的推动引发了对锂离子电池 (LIB) 的迫切呼吁。然而,以高纯度、高效率和低环境影响回收报废的 LIB,特别是通过消除化学试剂的使用和促进闭环碳足迹,是具有挑战性的。在此,我们提出了一种将碳捕获 (CC) 过程与电化学增强膜蒸馏系统 (ECMD) 相结合的策略。人工 LiCoO2 渗滤液在 Li+/Co2+ 分离模式下处理,分离因子超过 14000,形成 CoO(OH) 沉淀物和富锂浓缩物。随后,以 Li+ 回收模式处理富锂精矿,收获纯度超过 99.80 wt.% 的电池级 Li2CO3。Li2CO3 的产量计算高达 234.19 g·kW-1·h-1,CC 效率为 31.89%。膜污染和膜失效分析进一步证实了该工艺的稳健性。最后,通过耦合 Antoine 方程、法拉第定律和双膜理论来描述传质和转换过程。在此基础上,建立了动态平衡模型,揭示了长期零排液处理的可行性。本研究为 LIBS 回收提供了一种创新途径,并强调了所提出的数学模型在设计具有较小环境足迹的新型膜过程方面的潜力。
更新日期:2024-12-15
中文翻译:
将 CO2 捕获工艺与电化学增强膜蒸馏系统耦合用于锂离子电池回收:节省试剂并减少环境足迹
能源结构的演变和碳中和的推动引发了对锂离子电池 (LIB) 的迫切呼吁。然而,以高纯度、高效率和低环境影响回收报废的 LIB,特别是通过消除化学试剂的使用和促进闭环碳足迹,是具有挑战性的。在此,我们提出了一种将碳捕获 (CC) 过程与电化学增强膜蒸馏系统 (ECMD) 相结合的策略。人工 LiCoO2 渗滤液在 Li+/Co2+ 分离模式下处理,分离因子超过 14000,形成 CoO(OH) 沉淀物和富锂浓缩物。随后,以 Li+ 回收模式处理富锂精矿,收获纯度超过 99.80 wt.% 的电池级 Li2CO3。Li2CO3 的产量计算高达 234.19 g·kW-1·h-1,CC 效率为 31.89%。膜污染和膜失效分析进一步证实了该工艺的稳健性。最后,通过耦合 Antoine 方程、法拉第定律和双膜理论来描述传质和转换过程。在此基础上,建立了动态平衡模型,揭示了长期零排液处理的可行性。本研究为 LIBS 回收提供了一种创新途径,并强调了所提出的数学模型在设计具有较小环境足迹的新型膜过程方面的潜力。