当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Research on the preparation and corrosion resistance of integrated NiTi alloy bionic superhydrophobic corrosion-resistant surface based on additive manufacturing technology
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-12-13 , DOI: 10.1016/j.apsusc.2024.162048 Zhenglei Yu, Pengwei Sha, Yanan Yang, KongYuan Yang, Binkai Guo, Zhengzhi Mu, Yiwu Kuang, Xin Liu, Zezhou Xu, Yunting Guo, Zhenze Liu
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-12-13 , DOI: 10.1016/j.apsusc.2024.162048 Zhenglei Yu, Pengwei Sha, Yanan Yang, KongYuan Yang, Binkai Guo, Zhengzhi Mu, Yiwu Kuang, Xin Liu, Zezhou Xu, Yunting Guo, Zhenze Liu
Wettable surfaces on metal substrates have garnered significant attention due to their critical role in aerospace and medical applications, particularly in enhancing corrosion resistance. However, achieving a transition in metal surface wettability often necessitates secondary processing of the substrate surface, which is typically limited to components with simple geometries. The direct fabrication of corrosion-resistant structures on complex component surfaces remains a considerable challenge. This paper proposes a novel method for the direct preparation of corrosion-resistant structures on intricate parts utilizing additive manufacturing technology, successfully fabricating three bionic corrosion-resistant structures. The results indicate that the bionic lotus leaf structure sample, with a height of 500 μm, exhibits the best corrosion resistance, demonstrating an order of magnitude improvement over the original sample and achieving the highest contact angle value of 150.1°. Notably, the bionic lotus leaf structure (Icorr = 9.8 ± 0.8 × 10−8 A/cm2) outperforms both the bionic cicada wing structure (Icorr = 1.2 ± 0.7 × 10-6 A/cm2) and the bionic shark skin structure (Icorr = 1.7 ± 0.7 × 10−7 A/cm2) in terms of corrosion resistance.
中文翻译:
基于增材制造技术的整体NiTi合金仿生超疏水耐腐蚀表面的制备及耐腐蚀研究
金属基材上的可润湿表面因其在航空航天和医疗应用中的关键作用而受到广泛关注,尤其是在增强耐腐蚀性方面。然而,实现金属表面润湿性的转变通常需要对基材表面进行二次加工,这通常仅限于具有简单几何形状的组件。在复杂部件表面直接制造耐腐蚀结构仍然是一个相当大的挑战。本文提出了一种利用增材制造技术在复杂部件上直接制备耐腐蚀结构的新方法,成功制造了三种仿生耐腐蚀结构。结果表明,高度为 500 μm 的仿生荷叶结构样品表现出最佳的耐腐蚀性,比原始样品提高了一个数量级,并达到了 150.1° 的最高接触角值。值得注意的是,仿生荷叶结构 (I corr = 9.8 ± 0.8 × 10 −8 A/cm 2 ) 在耐腐蚀性方面优于仿生蝉翼结构 (I corr = 1.2 ± 0.7 × 10 -6 A/cm 2 ) 和仿生鲨鱼皮肤结构 (I corr = 1.7 ± 0.7 × 10 −7 A/cm 2 )。
更新日期:2024-12-17
中文翻译:
基于增材制造技术的整体NiTi合金仿生超疏水耐腐蚀表面的制备及耐腐蚀研究
金属基材上的可润湿表面因其在航空航天和医疗应用中的关键作用而受到广泛关注,尤其是在增强耐腐蚀性方面。然而,实现金属表面润湿性的转变通常需要对基材表面进行二次加工,这通常仅限于具有简单几何形状的组件。在复杂部件表面直接制造耐腐蚀结构仍然是一个相当大的挑战。本文提出了一种利用增材制造技术在复杂部件上直接制备耐腐蚀结构的新方法,成功制造了三种仿生耐腐蚀结构。结果表明,高度为 500 μm 的仿生荷叶结构样品表现出最佳的耐腐蚀性,比原始样品提高了一个数量级,并达到了 150.1° 的最高接触角值。值得注意的是,仿生荷叶结构 (I corr = 9.8 ± 0.8 × 10 −8 A/cm 2 ) 在耐腐蚀性方面优于仿生蝉翼结构 (I corr = 1.2 ± 0.7 × 10 -6 A/cm 2 ) 和仿生鲨鱼皮肤结构 (I corr = 1.7 ± 0.7 × 10 −7 A/cm 2 )。