当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensitivity Analysis in Photodynamics: How Does the Electronic Structure Control cis-Stilbene Photodynamics?
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-12-12 , DOI: 10.1021/acs.jctc.4c01008
Tomáš Jíra,Jiří Janoš,Petr Slavíček

The techniques of computational photodynamics are increasingly employed to unravel reaction mechanisms and interpret experiments. However, misinterpretations in nonadiabatic dynamics caused by inaccurate underlying potentials are often difficult to foresee. This work focuses on revealing the systematic errors in the nonadiabatic simulations due to the underlying potentials and suggests a thrifty approach to evaluate the sensitivity of the simulations to the potential. This issue is exemplified in the photochemistry of cis-stilbene, where similar experimental outcomes have been differently interpreted based on the electronic structure methods supporting nonadiabatic dynamics. We examine the predictions of cis-stilbene photochemistry using trajectory surface hopping methods coupled with various electronic structure methods (OM3-MRCISD, SA2-CASSCF, XMS-SA2-CASPT2, and XMS-SA3-CASPT2) and assess their ability to interpret experimental observations. While the excited-state lifetimes and calculated photoelectron spectra show consistency with experiments, the reaction quantum yields vary significantly: either completely suppressing cyclization or isomerization. Intriguingly, analyzing stationary points on the potential energy surface does not hint at any major discrepancy, making the electronic structure methods seemingly reliable when treated separately. We show that performing an ensemble of simulations with different potentials provides an estimate of the electronic structure sensitivity. However, this ensemble approach is costly. Thus, we propose running nonadiabatic simulations with an external bias at a resource-efficient underlying potential (semiempirical or machine-learned) for the sensitivity analysis. We demonstrate this approach using a semiempirical OM3-MRCISD method with a harmonic bias toward cyclization.

中文翻译:


光动力学中的敏感性分析:电子结构如何控制顺式-二苯乙烯光动力学?



计算光动力学技术越来越多地用于解开反应机理和解释实验。然而,由于不准确的潜在电位而导致的非绝热动力学中的误解通常很难预见。这项工作的重点是揭示非绝热模拟中由于潜在电位引起的系统误差,并提出了一种节俭的方法来评估模拟对电位的敏感性。这个问题在顺式二苯乙烯的光化学中得到了例证,其中类似的实验结果根据支持非绝热动力学的电子结构方法被不同的解释。我们使用轨迹表面跳跃方法结合各种电子结构方法(OM3-MRCISD、SA2-CASSCF、XMS-SA2-CASPT2 和 XMS-SA3-CASPT2)检查了顺式-二苯乙烯光化学的预测,并评估了它们解释实验观察的能力。虽然激发态寿命和计算的光电子光谱显示出与实验的一致性,但反应量子产率差异很大:要么完全抑制环化,要么完全异构化。有趣的是,分析势能表面上的静止点并没有暗示任何重大差异,这使得电子结构方法在单独处理时似乎是可靠的。我们表明,执行具有不同电位的仿真集合可以估计电子结构灵敏度。但是,这种集成方法的成本很高。因此,我们建议在资源高效的潜在潜力(半经验或机器学习)上运行具有外部偏差的非绝热模拟,以进行敏感性分析。 我们使用半经验 OM3-MRCISD 方法演示了这种方法,该方法具有谐波偏向环化。
更新日期:2024-12-12
down
wechat
bug